src/HOL/HOLCF/Cpo.thy
changeset 81575 cb57350beaa9
child 81576 0a01bec9bc13
equal deleted inserted replaced
81574:c4abe6582ee5 81575:cb57350beaa9
       
     1 (*  Title:      HOL/HOLCF/Cpo.thy
       
     2     Author:     Franz Regensburger
       
     3     Author:     Tobias Nipkow
       
     4     Author:     Brian Huffman
       
     5 
       
     6 Foundations of HOLCF: complete partial orders etc.
       
     7 *)
       
     8 
       
     9 theory Cpo
       
    10   imports Main
       
    11 begin
       
    12 
       
    13 section \<open>Partial orders\<close>
       
    14 
       
    15 declare [[typedef_overloaded]]
       
    16 
       
    17 
       
    18 subsection \<open>Type class for partial orders\<close>
       
    19 
       
    20 class below =
       
    21   fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
       
    22 begin
       
    23 
       
    24 notation (ASCII)
       
    25   below (infix \<open><<\<close> 50)
       
    26 
       
    27 notation
       
    28   below (infix \<open>\<sqsubseteq>\<close> 50)
       
    29 
       
    30 abbreviation not_below :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  (infix \<open>\<notsqsubseteq>\<close> 50)
       
    31   where "not_below x y \<equiv> \<not> below x y"
       
    32 
       
    33 notation (ASCII)
       
    34   not_below  (infix \<open>~<<\<close> 50)
       
    35 
       
    36 lemma below_eq_trans: "a \<sqsubseteq> b \<Longrightarrow> b = c \<Longrightarrow> a \<sqsubseteq> c"
       
    37   by (rule subst)
       
    38 
       
    39 lemma eq_below_trans: "a = b \<Longrightarrow> b \<sqsubseteq> c \<Longrightarrow> a \<sqsubseteq> c"
       
    40   by (rule ssubst)
       
    41 
       
    42 end
       
    43 
       
    44 class po = below +
       
    45   assumes below_refl [iff]: "x \<sqsubseteq> x"
       
    46   assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"
       
    47   assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"
       
    48 begin
       
    49 
       
    50 lemma eq_imp_below: "x = y \<Longrightarrow> x \<sqsubseteq> y"
       
    51   by simp
       
    52 
       
    53 lemma box_below: "a \<sqsubseteq> b \<Longrightarrow> c \<sqsubseteq> a \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> c \<sqsubseteq> d"
       
    54   by (rule below_trans [OF below_trans])
       
    55 
       
    56 lemma po_eq_conv: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"
       
    57   by (fast intro!: below_antisym)
       
    58 
       
    59 lemma rev_below_trans: "y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z"
       
    60   by (rule below_trans)
       
    61 
       
    62 lemma not_below2not_eq: "x \<notsqsubseteq> y \<Longrightarrow> x \<noteq> y"
       
    63   by auto
       
    64 
       
    65 end
       
    66 
       
    67 lemmas HOLCF_trans_rules [trans] =
       
    68   below_trans
       
    69   below_antisym
       
    70   below_eq_trans
       
    71   eq_below_trans
       
    72 
       
    73 context po
       
    74 begin
       
    75 
       
    76 subsection \<open>Upper bounds\<close>
       
    77 
       
    78 definition is_ub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infix \<open><|\<close> 55)
       
    79   where "S <| x \<longleftrightarrow> (\<forall>y\<in>S. y \<sqsubseteq> x)"
       
    80 
       
    81 lemma is_ubI: "(\<And>x. x \<in> S \<Longrightarrow> x \<sqsubseteq> u) \<Longrightarrow> S <| u"
       
    82   by (simp add: is_ub_def)
       
    83 
       
    84 lemma is_ubD: "\<lbrakk>S <| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
       
    85   by (simp add: is_ub_def)
       
    86 
       
    87 lemma ub_imageI: "(\<And>x. x \<in> S \<Longrightarrow> f x \<sqsubseteq> u) \<Longrightarrow> (\<lambda>x. f x) ` S <| u"
       
    88   unfolding is_ub_def by fast
       
    89 
       
    90 lemma ub_imageD: "\<lbrakk>f ` S <| u; x \<in> S\<rbrakk> \<Longrightarrow> f x \<sqsubseteq> u"
       
    91   unfolding is_ub_def by fast
       
    92 
       
    93 lemma ub_rangeI: "(\<And>i. S i \<sqsubseteq> x) \<Longrightarrow> range S <| x"
       
    94   unfolding is_ub_def by fast
       
    95 
       
    96 lemma ub_rangeD: "range S <| x \<Longrightarrow> S i \<sqsubseteq> x"
       
    97   unfolding is_ub_def by fast
       
    98 
       
    99 lemma is_ub_empty [simp]: "{} <| u"
       
   100   unfolding is_ub_def by fast
       
   101 
       
   102 lemma is_ub_insert [simp]: "(insert x A) <| y = (x \<sqsubseteq> y \<and> A <| y)"
       
   103   unfolding is_ub_def by fast
       
   104 
       
   105 lemma is_ub_upward: "\<lbrakk>S <| x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> S <| y"
       
   106   unfolding is_ub_def by (fast intro: below_trans)
       
   107 
       
   108 
       
   109 subsection \<open>Least upper bounds\<close>
       
   110 
       
   111 definition is_lub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infix \<open><<|\<close> 55)
       
   112   where "S <<| x \<longleftrightarrow> S <| x \<and> (\<forall>u. S <| u \<longrightarrow> x \<sqsubseteq> u)"
       
   113 
       
   114 definition lub :: "'a set \<Rightarrow> 'a"
       
   115   where "lub S = (THE x. S <<| x)"
       
   116 
       
   117 end
       
   118 
       
   119 syntax (ASCII)
       
   120   "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder LUB\<close>\<close>LUB _:_./ _)\<close> [0,0, 10] 10)
       
   121 
       
   122 syntax
       
   123   "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder \<Squnion>\<close>\<close>\<Squnion>_\<in>_./ _)\<close> [0,0, 10] 10)
       
   124 
       
   125 syntax_consts
       
   126   "_BLub" \<rightleftharpoons> lub
       
   127 
       
   128 translations
       
   129   "LUB x:A. t" \<rightleftharpoons> "CONST lub ((\<lambda>x. t) ` A)"
       
   130 
       
   131 context po
       
   132 begin
       
   133 
       
   134 abbreviation Lub  (binder \<open>\<Squnion>\<close> 10)
       
   135   where "\<Squnion>n. t n \<equiv> lub (range t)"
       
   136 
       
   137 notation (ASCII)
       
   138   Lub  (binder \<open>LUB \<close> 10)
       
   139 
       
   140 text \<open>access to some definition as inference rule\<close>
       
   141 
       
   142 lemma is_lubD1: "S <<| x \<Longrightarrow> S <| x"
       
   143   unfolding is_lub_def by fast
       
   144 
       
   145 lemma is_lubD2: "\<lbrakk>S <<| x; S <| u\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
       
   146   unfolding is_lub_def by fast
       
   147 
       
   148 lemma is_lubI: "\<lbrakk>S <| x; \<And>u. S <| u \<Longrightarrow> x \<sqsubseteq> u\<rbrakk> \<Longrightarrow> S <<| x"
       
   149   unfolding is_lub_def by fast
       
   150 
       
   151 lemma is_lub_below_iff: "S <<| x \<Longrightarrow> x \<sqsubseteq> u \<longleftrightarrow> S <| u"
       
   152   unfolding is_lub_def is_ub_def by (metis below_trans)
       
   153 
       
   154 text \<open>lubs are unique\<close>
       
   155 
       
   156 lemma is_lub_unique: "S <<| x \<Longrightarrow> S <<| y \<Longrightarrow> x = y"
       
   157   unfolding is_lub_def is_ub_def by (blast intro: below_antisym)
       
   158 
       
   159 text \<open>technical lemmas about \<^term>\<open>lub\<close> and \<^term>\<open>is_lub\<close>\<close>
       
   160 
       
   161 lemma is_lub_lub: "M <<| x \<Longrightarrow> M <<| lub M"
       
   162   unfolding lub_def by (rule theI [OF _ is_lub_unique])
       
   163 
       
   164 lemma lub_eqI: "M <<| l \<Longrightarrow> lub M = l"
       
   165   by (rule is_lub_unique [OF is_lub_lub])
       
   166 
       
   167 lemma is_lub_singleton [simp]: "{x} <<| x"
       
   168   by (simp add: is_lub_def)
       
   169 
       
   170 lemma lub_singleton [simp]: "lub {x} = x"
       
   171   by (rule is_lub_singleton [THEN lub_eqI])
       
   172 
       
   173 lemma is_lub_bin: "x \<sqsubseteq> y \<Longrightarrow> {x, y} <<| y"
       
   174   by (simp add: is_lub_def)
       
   175 
       
   176 lemma lub_bin: "x \<sqsubseteq> y \<Longrightarrow> lub {x, y} = y"
       
   177   by (rule is_lub_bin [THEN lub_eqI])
       
   178 
       
   179 lemma is_lub_maximal: "S <| x \<Longrightarrow> x \<in> S \<Longrightarrow> S <<| x"
       
   180   by (erule is_lubI, erule (1) is_ubD)
       
   181 
       
   182 lemma lub_maximal: "S <| x \<Longrightarrow> x \<in> S \<Longrightarrow> lub S = x"
       
   183   by (rule is_lub_maximal [THEN lub_eqI])
       
   184 
       
   185 
       
   186 subsection \<open>Countable chains\<close>
       
   187 
       
   188 definition chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool"
       
   189   where \<comment> \<open>Here we use countable chains and I prefer to code them as functions!\<close>
       
   190   "chain Y = (\<forall>i. Y i \<sqsubseteq> Y (Suc i))"
       
   191 
       
   192 lemma chainI: "(\<And>i. Y i \<sqsubseteq> Y (Suc i)) \<Longrightarrow> chain Y"
       
   193   unfolding chain_def by fast
       
   194 
       
   195 lemma chainE: "chain Y \<Longrightarrow> Y i \<sqsubseteq> Y (Suc i)"
       
   196   unfolding chain_def by fast
       
   197 
       
   198 text \<open>chains are monotone functions\<close>
       
   199 
       
   200 lemma chain_mono_less: "chain Y \<Longrightarrow> i < j \<Longrightarrow> Y i \<sqsubseteq> Y j"
       
   201   by (erule less_Suc_induct, erule chainE, erule below_trans)
       
   202 
       
   203 lemma chain_mono: "chain Y \<Longrightarrow> i \<le> j \<Longrightarrow> Y i \<sqsubseteq> Y j"
       
   204   by (cases "i = j") (simp_all add: chain_mono_less)
       
   205 
       
   206 lemma chain_shift: "chain Y \<Longrightarrow> chain (\<lambda>i. Y (i + j))"
       
   207   by (rule chainI, simp, erule chainE)
       
   208 
       
   209 text \<open>technical lemmas about (least) upper bounds of chains\<close>
       
   210 
       
   211 lemma is_lub_rangeD1: "range S <<| x \<Longrightarrow> S i \<sqsubseteq> x"
       
   212   by (rule is_lubD1 [THEN ub_rangeD])
       
   213 
       
   214 lemma is_ub_range_shift: "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x"
       
   215   apply (rule iffI)
       
   216    apply (rule ub_rangeI)
       
   217    apply (rule_tac y="S (i + j)" in below_trans)
       
   218     apply (erule chain_mono)
       
   219     apply (rule le_add1)
       
   220    apply (erule ub_rangeD)
       
   221   apply (rule ub_rangeI)
       
   222   apply (erule ub_rangeD)
       
   223   done
       
   224 
       
   225 lemma is_lub_range_shift: "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x"
       
   226   by (simp add: is_lub_def is_ub_range_shift)
       
   227 
       
   228 text \<open>the lub of a constant chain is the constant\<close>
       
   229 
       
   230 lemma chain_const [simp]: "chain (\<lambda>i. c)"
       
   231   by (simp add: chainI)
       
   232 
       
   233 lemma is_lub_const: "range (\<lambda>x. c) <<| c"
       
   234 by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)
       
   235 
       
   236 lemma lub_const [simp]: "(\<Squnion>i. c) = c"
       
   237   by (rule is_lub_const [THEN lub_eqI])
       
   238 
       
   239 
       
   240 subsection \<open>Finite chains\<close>
       
   241 
       
   242 definition max_in_chain :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool"
       
   243   where \<comment> \<open>finite chains, needed for monotony of continuous functions\<close>
       
   244   "max_in_chain i C \<longleftrightarrow> (\<forall>j. i \<le> j \<longrightarrow> C i = C j)"
       
   245 
       
   246 definition finite_chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool"
       
   247   where "finite_chain C = (chain C \<and> (\<exists>i. max_in_chain i C))"
       
   248 
       
   249 text \<open>results about finite chains\<close>
       
   250 
       
   251 lemma max_in_chainI: "(\<And>j. i \<le> j \<Longrightarrow> Y i = Y j) \<Longrightarrow> max_in_chain i Y"
       
   252   unfolding max_in_chain_def by fast
       
   253 
       
   254 lemma max_in_chainD: "max_in_chain i Y \<Longrightarrow> i \<le> j \<Longrightarrow> Y i = Y j"
       
   255   unfolding max_in_chain_def by fast
       
   256 
       
   257 lemma finite_chainI: "chain C \<Longrightarrow> max_in_chain i C \<Longrightarrow> finite_chain C"
       
   258   unfolding finite_chain_def by fast
       
   259 
       
   260 lemma finite_chainE: "\<lbrakk>finite_chain C; \<And>i. \<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
       
   261   unfolding finite_chain_def by fast
       
   262 
       
   263 lemma lub_finch1: "chain C \<Longrightarrow> max_in_chain i C \<Longrightarrow> range C <<| C i"
       
   264   apply (rule is_lubI)
       
   265    apply (rule ub_rangeI, rename_tac j)
       
   266    apply (rule_tac x=i and y=j in linorder_le_cases)
       
   267     apply (drule (1) max_in_chainD, simp)
       
   268    apply (erule (1) chain_mono)
       
   269   apply (erule ub_rangeD)
       
   270   done
       
   271 
       
   272 lemma lub_finch2: "finite_chain C \<Longrightarrow> range C <<| C (LEAST i. max_in_chain i C)"
       
   273   apply (erule finite_chainE)
       
   274   apply (erule LeastI2 [where Q="\<lambda>i. range C <<| C i"])
       
   275   apply (erule (1) lub_finch1)
       
   276   done
       
   277 
       
   278 lemma finch_imp_finite_range: "finite_chain Y \<Longrightarrow> finite (range Y)"
       
   279   apply (erule finite_chainE)
       
   280   apply (rule_tac B="Y ` {..i}" in finite_subset)
       
   281    apply (rule subsetI)
       
   282    apply (erule rangeE, rename_tac j)
       
   283    apply (rule_tac x=i and y=j in linorder_le_cases)
       
   284     apply (subgoal_tac "Y j = Y i", simp)
       
   285     apply (simp add: max_in_chain_def)
       
   286    apply simp
       
   287   apply simp
       
   288   done
       
   289 
       
   290 lemma finite_range_has_max:
       
   291   fixes f :: "nat \<Rightarrow> 'a"
       
   292     and r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
       
   293   assumes mono: "\<And>i j. i \<le> j \<Longrightarrow> r (f i) (f j)"
       
   294   assumes finite_range: "finite (range f)"
       
   295   shows "\<exists>k. \<forall>i. r (f i) (f k)"
       
   296 proof (intro exI allI)
       
   297   fix i :: nat
       
   298   let ?j = "LEAST k. f k = f i"
       
   299   let ?k = "Max ((\<lambda>x. LEAST k. f k = x) ` range f)"
       
   300   have "?j \<le> ?k"
       
   301   proof (rule Max_ge)
       
   302     show "finite ((\<lambda>x. LEAST k. f k = x) ` range f)"
       
   303       using finite_range by (rule finite_imageI)
       
   304     show "?j \<in> (\<lambda>x. LEAST k. f k = x) ` range f"
       
   305       by (intro imageI rangeI)
       
   306   qed
       
   307   hence "r (f ?j) (f ?k)"
       
   308     by (rule mono)
       
   309   also have "f ?j = f i"
       
   310     by (rule LeastI, rule refl)
       
   311   finally show "r (f i) (f ?k)" .
       
   312 qed
       
   313 
       
   314 lemma finite_range_imp_finch: "chain Y \<Longrightarrow> finite (range Y) \<Longrightarrow> finite_chain Y"
       
   315   apply (subgoal_tac "\<exists>k. \<forall>i. Y i \<sqsubseteq> Y k")
       
   316    apply (erule exE)
       
   317    apply (rule finite_chainI, assumption)
       
   318    apply (rule max_in_chainI)
       
   319    apply (rule below_antisym)
       
   320     apply (erule (1) chain_mono)
       
   321    apply (erule spec)
       
   322   apply (rule finite_range_has_max)
       
   323    apply (erule (1) chain_mono)
       
   324   apply assumption
       
   325   done
       
   326 
       
   327 lemma bin_chain: "x \<sqsubseteq> y \<Longrightarrow> chain (\<lambda>i. if i=0 then x else y)"
       
   328   by (rule chainI) simp
       
   329 
       
   330 lemma bin_chainmax: "x \<sqsubseteq> y \<Longrightarrow> max_in_chain (Suc 0) (\<lambda>i. if i=0 then x else y)"
       
   331   by (simp add: max_in_chain_def)
       
   332 
       
   333 lemma is_lub_bin_chain: "x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. if i=0 then x else y) <<| y"
       
   334   apply (frule bin_chain)
       
   335   apply (drule bin_chainmax)
       
   336   apply (drule (1) lub_finch1)
       
   337   apply simp
       
   338   done
       
   339 
       
   340 text \<open>the maximal element in a chain is its lub\<close>
       
   341 
       
   342 lemma lub_chain_maxelem: "Y i = c \<Longrightarrow> \<forall>i. Y i \<sqsubseteq> c \<Longrightarrow> lub (range Y) = c"
       
   343   by (blast dest: ub_rangeD intro: lub_eqI is_lubI ub_rangeI)
       
   344 
       
   345 end
       
   346 
       
   347 
       
   348 section \<open>Classes cpo and pcpo\<close>
       
   349 
       
   350 subsection \<open>Complete partial orders\<close>
       
   351 
       
   352 text \<open>The class cpo of chain complete partial orders\<close>
       
   353 
       
   354 class cpo = po +
       
   355   assumes cpo: "chain S \<Longrightarrow> \<exists>x. range S <<| x"
       
   356 begin
       
   357 
       
   358 text \<open>in cpo's everthing equal to THE lub has lub properties for every chain\<close>
       
   359 
       
   360 lemma cpo_lubI: "chain S \<Longrightarrow> range S <<| (\<Squnion>i. S i)"
       
   361   by (fast dest: cpo elim: is_lub_lub)
       
   362 
       
   363 lemma thelubE: "\<lbrakk>chain S; (\<Squnion>i. S i) = l\<rbrakk> \<Longrightarrow> range S <<| l"
       
   364   by (blast dest: cpo intro: is_lub_lub)
       
   365 
       
   366 text \<open>Properties of the lub\<close>
       
   367 
       
   368 lemma is_ub_thelub: "chain S \<Longrightarrow> S x \<sqsubseteq> (\<Squnion>i. S i)"
       
   369   by (blast dest: cpo intro: is_lub_lub [THEN is_lub_rangeD1])
       
   370 
       
   371 lemma is_lub_thelub: "\<lbrakk>chain S; range S <| x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x"
       
   372   by (blast dest: cpo intro: is_lub_lub [THEN is_lubD2])
       
   373 
       
   374 lemma lub_below_iff: "chain S \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x \<longleftrightarrow> (\<forall>i. S i \<sqsubseteq> x)"
       
   375   by (simp add: is_lub_below_iff [OF cpo_lubI] is_ub_def)
       
   376 
       
   377 lemma lub_below: "\<lbrakk>chain S; \<And>i. S i \<sqsubseteq> x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x"
       
   378   by (simp add: lub_below_iff)
       
   379 
       
   380 lemma below_lub: "\<lbrakk>chain S; x \<sqsubseteq> S i\<rbrakk> \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. S i)"
       
   381   by (erule below_trans, erule is_ub_thelub)
       
   382 
       
   383 lemma lub_range_mono: "\<lbrakk>range X \<subseteq> range Y; chain Y; chain X\<rbrakk> \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
       
   384   apply (erule lub_below)
       
   385   apply (subgoal_tac "\<exists>j. X i = Y j")
       
   386    apply clarsimp
       
   387    apply (erule is_ub_thelub)
       
   388   apply auto
       
   389   done
       
   390 
       
   391 lemma lub_range_shift: "chain Y \<Longrightarrow> (\<Squnion>i. Y (i + j)) = (\<Squnion>i. Y i)"
       
   392   apply (rule below_antisym)
       
   393    apply (rule lub_range_mono)
       
   394      apply fast
       
   395     apply assumption
       
   396    apply (erule chain_shift)
       
   397   apply (rule lub_below)
       
   398    apply assumption
       
   399   apply (rule_tac i="i" in below_lub)
       
   400    apply (erule chain_shift)
       
   401   apply (erule chain_mono)
       
   402   apply (rule le_add1)
       
   403   done
       
   404 
       
   405 lemma maxinch_is_thelub: "chain Y \<Longrightarrow> max_in_chain i Y = ((\<Squnion>i. Y i) = Y i)"
       
   406   apply (rule iffI)
       
   407    apply (fast intro!: lub_eqI lub_finch1)
       
   408   apply (unfold max_in_chain_def)
       
   409   apply (safe intro!: below_antisym)
       
   410    apply (fast elim!: chain_mono)
       
   411   apply (drule sym)
       
   412   apply (force elim!: is_ub_thelub)
       
   413   done
       
   414 
       
   415 text \<open>the \<open>\<sqsubseteq>\<close> relation between two chains is preserved by their lubs\<close>
       
   416 
       
   417 lemma lub_mono: "\<lbrakk>chain X; chain Y; \<And>i. X i \<sqsubseteq> Y i\<rbrakk> \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
       
   418   by (fast elim: lub_below below_lub)
       
   419 
       
   420 text \<open>the = relation between two chains is preserved by their lubs\<close>
       
   421 
       
   422 lemma lub_eq: "(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
       
   423   by simp
       
   424 
       
   425 lemma ch2ch_lub:
       
   426   assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
       
   427   assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
       
   428   shows "chain (\<lambda>i. \<Squnion>j. Y i j)"
       
   429   apply (rule chainI)
       
   430   apply (rule lub_mono [OF 2 2])
       
   431   apply (rule chainE [OF 1])
       
   432   done
       
   433 
       
   434 lemma diag_lub:
       
   435   assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
       
   436   assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
       
   437   shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>i. Y i i)"
       
   438 proof (rule below_antisym)
       
   439   have 3: "chain (\<lambda>i. Y i i)"
       
   440     apply (rule chainI)
       
   441     apply (rule below_trans)
       
   442      apply (rule chainE [OF 1])
       
   443     apply (rule chainE [OF 2])
       
   444     done
       
   445   have 4: "chain (\<lambda>i. \<Squnion>j. Y i j)"
       
   446     by (rule ch2ch_lub [OF 1 2])
       
   447   show "(\<Squnion>i. \<Squnion>j. Y i j) \<sqsubseteq> (\<Squnion>i. Y i i)"
       
   448     apply (rule lub_below [OF 4])
       
   449     apply (rule lub_below [OF 2])
       
   450     apply (rule below_lub [OF 3])
       
   451     apply (rule below_trans)
       
   452      apply (rule chain_mono [OF 1 max.cobounded1])
       
   453     apply (rule chain_mono [OF 2 max.cobounded2])
       
   454     done
       
   455   show "(\<Squnion>i. Y i i) \<sqsubseteq> (\<Squnion>i. \<Squnion>j. Y i j)"
       
   456     apply (rule lub_mono [OF 3 4])
       
   457     apply (rule is_ub_thelub [OF 2])
       
   458     done
       
   459 qed
       
   460 
       
   461 lemma ex_lub:
       
   462   assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
       
   463   assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
       
   464   shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>j. \<Squnion>i. Y i j)"
       
   465   by (simp add: diag_lub 1 2)
       
   466 
       
   467 end
       
   468 
       
   469 
       
   470 subsection \<open>Pointed cpos\<close>
       
   471 
       
   472 text \<open>The class pcpo of pointed cpos\<close>
       
   473 
       
   474 class pcpo = cpo +
       
   475   assumes least: "\<exists>x. \<forall>y. x \<sqsubseteq> y"
       
   476 begin
       
   477 
       
   478 definition bottom :: "'a"  (\<open>\<bottom>\<close>)
       
   479   where "bottom = (THE x. \<forall>y. x \<sqsubseteq> y)"
       
   480 
       
   481 lemma minimal [iff]: "\<bottom> \<sqsubseteq> x"
       
   482   unfolding bottom_def
       
   483   apply (rule the1I2)
       
   484    apply (rule ex_ex1I)
       
   485     apply (rule least)
       
   486    apply (blast intro: below_antisym)
       
   487   apply simp
       
   488   done
       
   489 
       
   490 end
       
   491 
       
   492 text \<open>Old "UU" syntax:\<close>
       
   493 abbreviation (input) "UU \<equiv> bottom"
       
   494 
       
   495 text \<open>Simproc to rewrite \<^term>\<open>\<bottom> = x\<close> to \<^term>\<open>x = \<bottom>\<close>.\<close>
       
   496 setup \<open>Reorient_Proc.add (fn \<^Const_>\<open>bottom _\<close> => true | _ => false)\<close>
       
   497 simproc_setup reorient_bottom ("\<bottom> = x") = \<open>K Reorient_Proc.proc\<close>
       
   498 
       
   499 text \<open>useful lemmas about \<^term>\<open>\<bottom>\<close>\<close>
       
   500 
       
   501 lemma below_bottom_iff [simp]: "x \<sqsubseteq> \<bottom> \<longleftrightarrow> x = \<bottom>"
       
   502   by (simp add: po_eq_conv)
       
   503 
       
   504 lemma eq_bottom_iff: "x = \<bottom> \<longleftrightarrow> x \<sqsubseteq> \<bottom>"
       
   505   by simp
       
   506 
       
   507 lemma bottomI: "x \<sqsubseteq> \<bottom> \<Longrightarrow> x = \<bottom>"
       
   508   by (subst eq_bottom_iff)
       
   509 
       
   510 lemma lub_eq_bottom_iff: "chain Y \<Longrightarrow> (\<Squnion>i. Y i) = \<bottom> \<longleftrightarrow> (\<forall>i. Y i = \<bottom>)"
       
   511   by (simp only: eq_bottom_iff lub_below_iff)
       
   512 
       
   513 
       
   514 subsection \<open>Chain-finite and flat cpos\<close>
       
   515 
       
   516 text \<open>further useful classes for HOLCF domains\<close>
       
   517 
       
   518 class chfin = po +
       
   519   assumes chfin: "chain Y \<Longrightarrow> \<exists>n. max_in_chain n Y"
       
   520 begin
       
   521 
       
   522 subclass cpo
       
   523   apply standard
       
   524   apply (frule chfin)
       
   525   apply (blast intro: lub_finch1)
       
   526   done
       
   527 
       
   528 lemma chfin2finch: "chain Y \<Longrightarrow> finite_chain Y"
       
   529   by (simp add: chfin finite_chain_def)
       
   530 
       
   531 end
       
   532 
       
   533 class flat = pcpo +
       
   534   assumes ax_flat: "x \<sqsubseteq> y \<Longrightarrow> x = \<bottom> \<or> x = y"
       
   535 begin
       
   536 
       
   537 subclass chfin
       
   538 proof
       
   539   fix Y
       
   540   assume *: "chain Y"
       
   541   show "\<exists>n. max_in_chain n Y"
       
   542     apply (unfold max_in_chain_def)
       
   543     apply (cases "\<forall>i. Y i = \<bottom>")
       
   544      apply simp
       
   545     apply simp
       
   546     apply (erule exE)
       
   547     apply (rule_tac x="i" in exI)
       
   548     apply clarify
       
   549     using * apply (blast dest: chain_mono ax_flat)
       
   550     done
       
   551 qed
       
   552 
       
   553 lemma flat_below_iff: "x \<sqsubseteq> y \<longleftrightarrow> x = \<bottom> \<or> x = y"
       
   554   by (safe dest!: ax_flat)
       
   555 
       
   556 lemma flat_eq: "a \<noteq> \<bottom> \<Longrightarrow> a \<sqsubseteq> b = (a = b)"
       
   557   by (safe dest!: ax_flat)
       
   558 
       
   559 end
       
   560 
       
   561 subsection \<open>Discrete cpos\<close>
       
   562 
       
   563 class discrete_cpo = below +
       
   564   assumes discrete_cpo [simp]: "x \<sqsubseteq> y \<longleftrightarrow> x = y"
       
   565 begin
       
   566 
       
   567 subclass po
       
   568   by standard simp_all
       
   569 
       
   570 text \<open>In a discrete cpo, every chain is constant\<close>
       
   571 
       
   572 lemma discrete_chain_const:
       
   573   assumes S: "chain S"
       
   574   shows "\<exists>x. S = (\<lambda>i. x)"
       
   575 proof (intro exI ext)
       
   576   fix i :: nat
       
   577   from S le0 have "S 0 \<sqsubseteq> S i" by (rule chain_mono)
       
   578   then have "S 0 = S i" by simp
       
   579   then show "S i = S 0" by (rule sym)
       
   580 qed
       
   581 
       
   582 subclass chfin
       
   583 proof
       
   584   fix S :: "nat \<Rightarrow> 'a"
       
   585   assume S: "chain S"
       
   586   then have "\<exists>x. S = (\<lambda>i. x)"
       
   587     by (rule discrete_chain_const)
       
   588   then have "max_in_chain 0 S"
       
   589     by (auto simp: max_in_chain_def)
       
   590   then show "\<exists>i. max_in_chain i S" ..
       
   591 qed
       
   592 
       
   593 end
       
   594 
       
   595 
       
   596 section \<open>Continuity and monotonicity\<close>
       
   597 
       
   598 text \<open>
       
   599    Now we change the default class! Form now on all untyped type variables are
       
   600    of default class po
       
   601 \<close>
       
   602 
       
   603 default_sort po
       
   604 
       
   605 subsection \<open>Definitions\<close>
       
   606 
       
   607 definition monofun :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"  \<comment> \<open>monotonicity\<close>
       
   608   where "monofun f \<longleftrightarrow> (\<forall>x y. x \<sqsubseteq> y \<longrightarrow> f x \<sqsubseteq> f y)"
       
   609 
       
   610 definition cont :: "('a::cpo \<Rightarrow> 'b::cpo) \<Rightarrow> bool"
       
   611   where "cont f = (\<forall>Y. chain Y \<longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i))"
       
   612 
       
   613 lemma contI: "(\<And>Y. chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)) \<Longrightarrow> cont f"
       
   614   by (simp add: cont_def)
       
   615 
       
   616 lemma contE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)"
       
   617   by (simp add: cont_def)
       
   618 
       
   619 lemma monofunI: "(\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y) \<Longrightarrow> monofun f"
       
   620   by (simp add: monofun_def)
       
   621 
       
   622 lemma monofunE: "monofun f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
       
   623   by (simp add: monofun_def)
       
   624 
       
   625 
       
   626 subsection \<open>Equivalence of alternate definition\<close>
       
   627 
       
   628 text \<open>monotone functions map chains to chains\<close>
       
   629 
       
   630 lemma ch2ch_monofun: "monofun f \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. f (Y i))"
       
   631   apply (rule chainI)
       
   632   apply (erule monofunE)
       
   633   apply (erule chainE)
       
   634   done
       
   635 
       
   636 text \<open>monotone functions map upper bound to upper bounds\<close>
       
   637 
       
   638 lemma ub2ub_monofun: "monofun f \<Longrightarrow> range Y <| u \<Longrightarrow> range (\<lambda>i. f (Y i)) <| f u"
       
   639   apply (rule ub_rangeI)
       
   640   apply (erule monofunE)
       
   641   apply (erule ub_rangeD)
       
   642   done
       
   643 
       
   644 text \<open>a lemma about binary chains\<close>
       
   645 
       
   646 lemma binchain_cont: "cont f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. f (if i = 0 then x else y)) <<| f y"
       
   647   apply (subgoal_tac "f (\<Squnion>i::nat. if i = 0 then x else y) = f y")
       
   648    apply (erule subst)
       
   649    apply (erule contE)
       
   650    apply (erule bin_chain)
       
   651   apply (rule_tac f=f in arg_cong)
       
   652   apply (erule is_lub_bin_chain [THEN lub_eqI])
       
   653   done
       
   654 
       
   655 text \<open>continuity implies monotonicity\<close>
       
   656 
       
   657 lemma cont2mono: "cont f \<Longrightarrow> monofun f"
       
   658   apply (rule monofunI)
       
   659   apply (drule (1) binchain_cont)
       
   660   apply (drule_tac i=0 in is_lub_rangeD1)
       
   661   apply simp
       
   662   done
       
   663 
       
   664 lemmas cont2monofunE = cont2mono [THEN monofunE]
       
   665 
       
   666 lemmas ch2ch_cont = cont2mono [THEN ch2ch_monofun]
       
   667 
       
   668 text \<open>continuity implies preservation of lubs\<close>
       
   669 
       
   670 lemma cont2contlubE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> f (\<Squnion>i. Y i) = (\<Squnion>i. f (Y i))"
       
   671   apply (rule lub_eqI [symmetric])
       
   672   apply (erule (1) contE)
       
   673   done
       
   674 
       
   675 lemma contI2:
       
   676   fixes f :: "'a::cpo \<Rightarrow> 'b::cpo"
       
   677   assumes mono: "monofun f"
       
   678   assumes below: "\<And>Y. \<lbrakk>chain Y; chain (\<lambda>i. f (Y i))\<rbrakk> \<Longrightarrow> f (\<Squnion>i. Y i) \<sqsubseteq> (\<Squnion>i. f (Y i))"
       
   679   shows "cont f"
       
   680 proof (rule contI)
       
   681   fix Y :: "nat \<Rightarrow> 'a"
       
   682   assume Y: "chain Y"
       
   683   with mono have fY: "chain (\<lambda>i. f (Y i))"
       
   684     by (rule ch2ch_monofun)
       
   685   have "(\<Squnion>i. f (Y i)) = f (\<Squnion>i. Y i)"
       
   686     apply (rule below_antisym)
       
   687      apply (rule lub_below [OF fY])
       
   688      apply (rule monofunE [OF mono])
       
   689      apply (rule is_ub_thelub [OF Y])
       
   690     apply (rule below [OF Y fY])
       
   691     done
       
   692   with fY show "range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)"
       
   693     by (rule thelubE)
       
   694 qed
       
   695 
       
   696 
       
   697 subsection \<open>Collection of continuity rules\<close>
       
   698 
       
   699 named_theorems cont2cont "continuity intro rule"
       
   700 
       
   701 
       
   702 subsection \<open>Continuity of basic functions\<close>
       
   703 
       
   704 text \<open>The identity function is continuous\<close>
       
   705 
       
   706 lemma cont_id [simp, cont2cont]: "cont (\<lambda>x. x)"
       
   707   apply (rule contI)
       
   708   apply (erule cpo_lubI)
       
   709   done
       
   710 
       
   711 text \<open>constant functions are continuous\<close>
       
   712 
       
   713 lemma cont_const [simp, cont2cont]: "cont (\<lambda>x. c)"
       
   714   using is_lub_const by (rule contI)
       
   715 
       
   716 text \<open>application of functions is continuous\<close>
       
   717 
       
   718 lemma cont_apply:
       
   719   fixes f :: "'a::cpo \<Rightarrow> 'b::cpo \<Rightarrow> 'c::cpo" and t :: "'a \<Rightarrow> 'b"
       
   720   assumes 1: "cont (\<lambda>x. t x)"
       
   721   assumes 2: "\<And>x. cont (\<lambda>y. f x y)"
       
   722   assumes 3: "\<And>y. cont (\<lambda>x. f x y)"
       
   723   shows "cont (\<lambda>x. (f x) (t x))"
       
   724 proof (rule contI2 [OF monofunI])
       
   725   fix x y :: "'a"
       
   726   assume "x \<sqsubseteq> y"
       
   727   then show "f x (t x) \<sqsubseteq> f y (t y)"
       
   728     by (auto intro: cont2monofunE [OF 1]
       
   729         cont2monofunE [OF 2]
       
   730         cont2monofunE [OF 3]
       
   731         below_trans)
       
   732 next
       
   733   fix Y :: "nat \<Rightarrow> 'a"
       
   734   assume "chain Y"
       
   735   then show "f (\<Squnion>i. Y i) (t (\<Squnion>i. Y i)) \<sqsubseteq> (\<Squnion>i. f (Y i) (t (Y i)))"
       
   736     by (simp only: cont2contlubE [OF 1] ch2ch_cont [OF 1]
       
   737         cont2contlubE [OF 2] ch2ch_cont [OF 2]
       
   738         cont2contlubE [OF 3] ch2ch_cont [OF 3]
       
   739         diag_lub below_refl)
       
   740 qed
       
   741 
       
   742 lemma cont_compose: "cont c \<Longrightarrow> cont (\<lambda>x. f x) \<Longrightarrow> cont (\<lambda>x. c (f x))"
       
   743   by (rule cont_apply [OF _ _ cont_const])
       
   744 
       
   745 text \<open>Least upper bounds preserve continuity\<close>
       
   746 
       
   747 lemma cont2cont_lub [simp]:
       
   748   assumes chain: "\<And>x. chain (\<lambda>i. F i x)"
       
   749     and cont: "\<And>i. cont (\<lambda>x. F i x)"
       
   750   shows "cont (\<lambda>x. \<Squnion>i. F i x)"
       
   751   apply (rule contI2)
       
   752    apply (simp add: monofunI cont2monofunE [OF cont] lub_mono chain)
       
   753   apply (simp add: cont2contlubE [OF cont])
       
   754   apply (simp add: diag_lub ch2ch_cont [OF cont] chain)
       
   755   done
       
   756 
       
   757 text \<open>if-then-else is continuous\<close>
       
   758 
       
   759 lemma cont_if [simp, cont2cont]: "cont f \<Longrightarrow> cont g \<Longrightarrow> cont (\<lambda>x. if b then f x else g x)"
       
   760   by (induct b) simp_all
       
   761 
       
   762 
       
   763 subsection \<open>Finite chains and flat pcpos\<close>
       
   764 
       
   765 text \<open>Monotone functions map finite chains to finite chains.\<close>
       
   766 
       
   767 lemma monofun_finch2finch: "monofun f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))"
       
   768   by (force simp add: finite_chain_def ch2ch_monofun max_in_chain_def)
       
   769 
       
   770 text \<open>The same holds for continuous functions.\<close>
       
   771 
       
   772 lemma cont_finch2finch: "cont f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))"
       
   773   by (rule cont2mono [THEN monofun_finch2finch])
       
   774 
       
   775 text \<open>All monotone functions with chain-finite domain are continuous.\<close>
       
   776 
       
   777 lemma chfindom_monofun2cont: "monofun f \<Longrightarrow> cont f"
       
   778   for f :: "'a::chfin \<Rightarrow> 'b::cpo"
       
   779   apply (erule contI2)
       
   780   apply (frule chfin2finch)
       
   781   apply (clarsimp simp add: finite_chain_def)
       
   782   apply (subgoal_tac "max_in_chain i (\<lambda>i. f (Y i))")
       
   783    apply (simp add: maxinch_is_thelub ch2ch_monofun)
       
   784   apply (force simp add: max_in_chain_def)
       
   785   done
       
   786 
       
   787 text \<open>All strict functions with flat domain are continuous.\<close>
       
   788 
       
   789 lemma flatdom_strict2mono: "f \<bottom> = \<bottom> \<Longrightarrow> monofun f"
       
   790   for f :: "'a::flat \<Rightarrow> 'b::pcpo"
       
   791   apply (rule monofunI)
       
   792   apply (drule ax_flat)
       
   793   apply auto
       
   794   done
       
   795 
       
   796 lemma flatdom_strict2cont: "f \<bottom> = \<bottom> \<Longrightarrow> cont f"
       
   797   for f :: "'a::flat \<Rightarrow> 'b::pcpo"
       
   798   by (rule flatdom_strict2mono [THEN chfindom_monofun2cont])
       
   799 
       
   800 text \<open>All functions with discrete domain are continuous.\<close>
       
   801 
       
   802 lemma cont_discrete_cpo [simp, cont2cont]: "cont f"
       
   803   for f :: "'a::discrete_cpo \<Rightarrow> 'b::cpo"
       
   804   apply (rule contI)
       
   805   apply (drule discrete_chain_const, clarify)
       
   806   apply simp
       
   807   done
       
   808 
       
   809 section \<open>Admissibility and compactness\<close>
       
   810 
       
   811 default_sort cpo
       
   812 
       
   813 subsection \<open>Definitions\<close>
       
   814 
       
   815 definition adm :: "('a::cpo \<Rightarrow> bool) \<Rightarrow> bool"
       
   816   where "adm P \<longleftrightarrow> (\<forall>Y. chain Y \<longrightarrow> (\<forall>i. P (Y i)) \<longrightarrow> P (\<Squnion>i. Y i))"
       
   817 
       
   818 lemma admI: "(\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)) \<Longrightarrow> adm P"
       
   819   unfolding adm_def by fast
       
   820 
       
   821 lemma admD: "adm P \<Longrightarrow> chain Y \<Longrightarrow> (\<And>i. P (Y i)) \<Longrightarrow> P (\<Squnion>i. Y i)"
       
   822   unfolding adm_def by fast
       
   823 
       
   824 lemma admD2: "adm (\<lambda>x. \<not> P x) \<Longrightarrow> chain Y \<Longrightarrow> P (\<Squnion>i. Y i) \<Longrightarrow> \<exists>i. P (Y i)"
       
   825   unfolding adm_def by fast
       
   826 
       
   827 lemma triv_admI: "\<forall>x. P x \<Longrightarrow> adm P"
       
   828   by (rule admI) (erule spec)
       
   829 
       
   830 
       
   831 subsection \<open>Admissibility on chain-finite types\<close>
       
   832 
       
   833 text \<open>For chain-finite (easy) types every formula is admissible.\<close>
       
   834 
       
   835 lemma adm_chfin [simp]: "adm P"
       
   836   for P :: "'a::chfin \<Rightarrow> bool"
       
   837   by (rule admI, frule chfin, auto simp add: maxinch_is_thelub)
       
   838 
       
   839 
       
   840 subsection \<open>Admissibility of special formulae and propagation\<close>
       
   841 
       
   842 lemma adm_const [simp]: "adm (\<lambda>x. t)"
       
   843   by (rule admI, simp)
       
   844 
       
   845 lemma adm_conj [simp]: "adm (\<lambda>x. P x) \<Longrightarrow> adm (\<lambda>x. Q x) \<Longrightarrow> adm (\<lambda>x. P x \<and> Q x)"
       
   846   by (fast intro: admI elim: admD)
       
   847 
       
   848 lemma adm_all [simp]: "(\<And>y. adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y. P x y)"
       
   849   by (fast intro: admI elim: admD)
       
   850 
       
   851 lemma adm_ball [simp]: "(\<And>y. y \<in> A \<Longrightarrow> adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y\<in>A. P x y)"
       
   852   by (fast intro: admI elim: admD)
       
   853 
       
   854 text \<open>Admissibility for disjunction is hard to prove. It requires 2 lemmas.\<close>
       
   855 
       
   856 lemma adm_disj_lemma1:
       
   857   assumes adm: "adm P"
       
   858   assumes chain: "chain Y"
       
   859   assumes P: "\<forall>i. \<exists>j\<ge>i. P (Y j)"
       
   860   shows "P (\<Squnion>i. Y i)"
       
   861 proof -
       
   862   define f where "f i = (LEAST j. i \<le> j \<and> P (Y j))" for i
       
   863   have chain': "chain (\<lambda>i. Y (f i))"
       
   864     unfolding f_def
       
   865     apply (rule chainI)
       
   866     apply (rule chain_mono [OF chain])
       
   867     apply (rule Least_le)
       
   868     apply (rule LeastI2_ex)
       
   869      apply (simp_all add: P)
       
   870     done
       
   871   have f1: "\<And>i. i \<le> f i" and f2: "\<And>i. P (Y (f i))"
       
   872     using LeastI_ex [OF P [rule_format]] by (simp_all add: f_def)
       
   873   have lub_eq: "(\<Squnion>i. Y i) = (\<Squnion>i. Y (f i))"
       
   874     apply (rule below_antisym)
       
   875      apply (rule lub_mono [OF chain chain'])
       
   876      apply (rule chain_mono [OF chain f1])
       
   877     apply (rule lub_range_mono [OF _ chain chain'])
       
   878     apply clarsimp
       
   879     done
       
   880   show "P (\<Squnion>i. Y i)"
       
   881     unfolding lub_eq using adm chain' f2 by (rule admD)
       
   882 qed
       
   883 
       
   884 lemma adm_disj_lemma2: "\<forall>n::nat. P n \<or> Q n \<Longrightarrow> (\<forall>i. \<exists>j\<ge>i. P j) \<or> (\<forall>i. \<exists>j\<ge>i. Q j)"
       
   885   apply (erule contrapos_pp)
       
   886   apply (clarsimp, rename_tac a b)
       
   887   apply (rule_tac x="max a b" in exI)
       
   888   apply simp
       
   889   done
       
   890 
       
   891 lemma adm_disj [simp]: "adm (\<lambda>x. P x) \<Longrightarrow> adm (\<lambda>x. Q x) \<Longrightarrow> adm (\<lambda>x. P x \<or> Q x)"
       
   892   apply (rule admI)
       
   893   apply (erule adm_disj_lemma2 [THEN disjE])
       
   894    apply (erule (2) adm_disj_lemma1 [THEN disjI1])
       
   895   apply (erule (2) adm_disj_lemma1 [THEN disjI2])
       
   896   done
       
   897 
       
   898 lemma adm_imp [simp]: "adm (\<lambda>x. \<not> P x) \<Longrightarrow> adm (\<lambda>x. Q x) \<Longrightarrow> adm (\<lambda>x. P x \<longrightarrow> Q x)"
       
   899   by (subst imp_conv_disj) (rule adm_disj)
       
   900 
       
   901 lemma adm_iff [simp]: "adm (\<lambda>x. P x \<longrightarrow> Q x) \<Longrightarrow> adm (\<lambda>x. Q x \<longrightarrow> P x) \<Longrightarrow> adm (\<lambda>x. P x \<longleftrightarrow> Q x)"
       
   902   by (subst iff_conv_conj_imp) (rule adm_conj)
       
   903 
       
   904 text \<open>admissibility and continuity\<close>
       
   905 
       
   906 lemma adm_below [simp]: "cont (\<lambda>x. u x) \<Longrightarrow> cont (\<lambda>x. v x) \<Longrightarrow> adm (\<lambda>x. u x \<sqsubseteq> v x)"
       
   907   by (simp add: adm_def cont2contlubE lub_mono ch2ch_cont)
       
   908 
       
   909 lemma adm_eq [simp]: "cont (\<lambda>x. u x) \<Longrightarrow> cont (\<lambda>x. v x) \<Longrightarrow> adm (\<lambda>x. u x = v x)"
       
   910   by (simp add: po_eq_conv)
       
   911 
       
   912 lemma adm_subst: "cont (\<lambda>x. t x) \<Longrightarrow> adm P \<Longrightarrow> adm (\<lambda>x. P (t x))"
       
   913   by (simp add: adm_def cont2contlubE ch2ch_cont)
       
   914 
       
   915 lemma adm_not_below [simp]: "cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. t x \<notsqsubseteq> u)"
       
   916   by (rule admI) (simp add: cont2contlubE ch2ch_cont lub_below_iff)
       
   917 
       
   918 
       
   919 subsection \<open>Compactness\<close>
       
   920 
       
   921 definition compact :: "'a::cpo \<Rightarrow> bool"
       
   922   where "compact k = adm (\<lambda>x. k \<notsqsubseteq> x)"
       
   923 
       
   924 lemma compactI: "adm (\<lambda>x. k \<notsqsubseteq> x) \<Longrightarrow> compact k"
       
   925   unfolding compact_def .
       
   926 
       
   927 lemma compactD: "compact k \<Longrightarrow> adm (\<lambda>x. k \<notsqsubseteq> x)"
       
   928   unfolding compact_def .
       
   929 
       
   930 lemma compactI2: "(\<And>Y. \<lbrakk>chain Y; x \<sqsubseteq> (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i) \<Longrightarrow> compact x"
       
   931   unfolding compact_def adm_def by fast
       
   932 
       
   933 lemma compactD2: "compact x \<Longrightarrow> chain Y \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. Y i) \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i"
       
   934   unfolding compact_def adm_def by fast
       
   935 
       
   936 lemma compact_below_lub_iff: "compact x \<Longrightarrow> chain Y \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. Y i) \<longleftrightarrow> (\<exists>i. x \<sqsubseteq> Y i)"
       
   937   by (fast intro: compactD2 elim: below_lub)
       
   938 
       
   939 lemma compact_chfin [simp]: "compact x"
       
   940   for x :: "'a::chfin"
       
   941   by (rule compactI [OF adm_chfin])
       
   942 
       
   943 lemma compact_imp_max_in_chain: "chain Y \<Longrightarrow> compact (\<Squnion>i. Y i) \<Longrightarrow> \<exists>i. max_in_chain i Y"
       
   944   apply (drule (1) compactD2, simp)
       
   945   apply (erule exE, rule_tac x=i in exI)
       
   946   apply (rule max_in_chainI)
       
   947   apply (rule below_antisym)
       
   948    apply (erule (1) chain_mono)
       
   949   apply (erule (1) below_trans [OF is_ub_thelub])
       
   950   done
       
   951 
       
   952 text \<open>admissibility and compactness\<close>
       
   953 
       
   954 lemma adm_compact_not_below [simp]:
       
   955   "compact k \<Longrightarrow> cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. k \<notsqsubseteq> t x)"
       
   956   unfolding compact_def by (rule adm_subst)
       
   957 
       
   958 lemma adm_neq_compact [simp]: "compact k \<Longrightarrow> cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. t x \<noteq> k)"
       
   959   by (simp add: po_eq_conv)
       
   960 
       
   961 lemma adm_compact_neq [simp]: "compact k \<Longrightarrow> cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. k \<noteq> t x)"
       
   962   by (simp add: po_eq_conv)
       
   963 
       
   964 lemma compact_bottom [simp, intro]: "compact \<bottom>"
       
   965   by (rule compactI) simp
       
   966 
       
   967 text \<open>Any upward-closed predicate is admissible.\<close>
       
   968 
       
   969 lemma adm_upward:
       
   970   assumes P: "\<And>x y. \<lbrakk>P x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> P y"
       
   971   shows "adm P"
       
   972   by (rule admI, drule spec, erule P, erule is_ub_thelub)
       
   973 
       
   974 lemmas adm_lemmas =
       
   975   adm_const adm_conj adm_all adm_ball adm_disj adm_imp adm_iff
       
   976   adm_below adm_eq adm_not_below
       
   977   adm_compact_not_below adm_compact_neq adm_neq_compact
       
   978 
       
   979 section \<open>Class instances for the full function space\<close>
       
   980 
       
   981 subsection \<open>Full function space is a partial order\<close>
       
   982 
       
   983 instantiation "fun"  :: (type, below) below
       
   984 begin
       
   985 
       
   986 definition below_fun_def: "(\<sqsubseteq>) \<equiv> (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x)"
       
   987 
       
   988 instance ..
       
   989 end
       
   990 
       
   991 instance "fun" :: (type, po) po
       
   992 proof
       
   993   fix f :: "'a \<Rightarrow> 'b"
       
   994   show "f \<sqsubseteq> f"
       
   995     by (simp add: below_fun_def)
       
   996 next
       
   997   fix f g :: "'a \<Rightarrow> 'b"
       
   998   assume "f \<sqsubseteq> g" and "g \<sqsubseteq> f" then show "f = g"
       
   999     by (simp add: below_fun_def fun_eq_iff below_antisym)
       
  1000 next
       
  1001   fix f g h :: "'a \<Rightarrow> 'b"
       
  1002   assume "f \<sqsubseteq> g" and "g \<sqsubseteq> h" then show "f \<sqsubseteq> h"
       
  1003     unfolding below_fun_def by (fast elim: below_trans)
       
  1004 qed
       
  1005 
       
  1006 lemma fun_below_iff: "f \<sqsubseteq> g \<longleftrightarrow> (\<forall>x. f x \<sqsubseteq> g x)"
       
  1007   by (simp add: below_fun_def)
       
  1008 
       
  1009 lemma fun_belowI: "(\<And>x. f x \<sqsubseteq> g x) \<Longrightarrow> f \<sqsubseteq> g"
       
  1010   by (simp add: below_fun_def)
       
  1011 
       
  1012 lemma fun_belowD: "f \<sqsubseteq> g \<Longrightarrow> f x \<sqsubseteq> g x"
       
  1013   by (simp add: below_fun_def)
       
  1014 
       
  1015 
       
  1016 subsection \<open>Full function space is chain complete\<close>
       
  1017 
       
  1018 text \<open>Properties of chains of functions.\<close>
       
  1019 
       
  1020 lemma fun_chain_iff: "chain S \<longleftrightarrow> (\<forall>x. chain (\<lambda>i. S i x))"
       
  1021   by (auto simp: chain_def fun_below_iff)
       
  1022 
       
  1023 lemma ch2ch_fun: "chain S \<Longrightarrow> chain (\<lambda>i. S i x)"
       
  1024   by (simp add: chain_def below_fun_def)
       
  1025 
       
  1026 lemma ch2ch_lambda: "(\<And>x. chain (\<lambda>i. S i x)) \<Longrightarrow> chain S"
       
  1027   by (simp add: chain_def below_fun_def)
       
  1028 
       
  1029 text \<open>Type \<^typ>\<open>'a::type \<Rightarrow> 'b::cpo\<close> is chain complete\<close>
       
  1030 
       
  1031 lemma is_lub_lambda: "(\<And>x. range (\<lambda>i. Y i x) <<| f x) \<Longrightarrow> range Y <<| f"
       
  1032   by (simp add: is_lub_def is_ub_def below_fun_def)
       
  1033 
       
  1034 lemma is_lub_fun: "chain S \<Longrightarrow> range S <<| (\<lambda>x. \<Squnion>i. S i x)"
       
  1035   for S :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo"
       
  1036   apply (rule is_lub_lambda)
       
  1037   apply (rule cpo_lubI)
       
  1038   apply (erule ch2ch_fun)
       
  1039   done
       
  1040 
       
  1041 lemma lub_fun: "chain S \<Longrightarrow> (\<Squnion>i. S i) = (\<lambda>x. \<Squnion>i. S i x)"
       
  1042   for S :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo"
       
  1043   by (rule is_lub_fun [THEN lub_eqI])
       
  1044 
       
  1045 instance "fun"  :: (type, cpo) cpo
       
  1046   by intro_classes (rule exI, erule is_lub_fun)
       
  1047 
       
  1048 instance "fun" :: (type, discrete_cpo) discrete_cpo
       
  1049 proof
       
  1050   fix f g :: "'a \<Rightarrow> 'b"
       
  1051   show "f \<sqsubseteq> g \<longleftrightarrow> f = g"
       
  1052     by (simp add: fun_below_iff fun_eq_iff)
       
  1053 qed
       
  1054 
       
  1055 
       
  1056 subsection \<open>Full function space is pointed\<close>
       
  1057 
       
  1058 lemma minimal_fun: "(\<lambda>x. \<bottom>) \<sqsubseteq> f"
       
  1059   by (simp add: below_fun_def)
       
  1060 
       
  1061 instance "fun"  :: (type, pcpo) pcpo
       
  1062   by standard (fast intro: minimal_fun)
       
  1063 
       
  1064 lemma inst_fun_pcpo: "\<bottom> = (\<lambda>x. \<bottom>)"
       
  1065   by (rule minimal_fun [THEN bottomI, symmetric])
       
  1066 
       
  1067 lemma app_strict [simp]: "\<bottom> x = \<bottom>"
       
  1068   by (simp add: inst_fun_pcpo)
       
  1069 
       
  1070 lemma lambda_strict: "(\<lambda>x. \<bottom>) = \<bottom>"
       
  1071   by (rule bottomI, rule minimal_fun)
       
  1072 
       
  1073 
       
  1074 subsection \<open>Propagation of monotonicity and continuity\<close>
       
  1075 
       
  1076 text \<open>The lub of a chain of monotone functions is monotone.\<close>
       
  1077 
       
  1078 lemma adm_monofun: "adm monofun"
       
  1079   by (rule admI) (simp add: lub_fun fun_chain_iff monofun_def lub_mono)
       
  1080 
       
  1081 text \<open>The lub of a chain of continuous functions is continuous.\<close>
       
  1082 
       
  1083 lemma adm_cont: "adm cont"
       
  1084   by (rule admI) (simp add: lub_fun fun_chain_iff)
       
  1085 
       
  1086 text \<open>Function application preserves monotonicity and continuity.\<close>
       
  1087 
       
  1088 lemma mono2mono_fun: "monofun f \<Longrightarrow> monofun (\<lambda>x. f x y)"
       
  1089   by (simp add: monofun_def fun_below_iff)
       
  1090 
       
  1091 lemma cont2cont_fun: "cont f \<Longrightarrow> cont (\<lambda>x. f x y)"
       
  1092   apply (rule contI2)
       
  1093    apply (erule cont2mono [THEN mono2mono_fun])
       
  1094   apply (simp add: cont2contlubE lub_fun ch2ch_cont)
       
  1095   done
       
  1096 
       
  1097 lemma cont_fun: "cont (\<lambda>f. f x)"
       
  1098   using cont_id by (rule cont2cont_fun)
       
  1099 
       
  1100 text \<open>
       
  1101   Lambda abstraction preserves monotonicity and continuity.
       
  1102   (Note \<open>(\<lambda>x. \<lambda>y. f x y) = f\<close>.)
       
  1103 \<close>
       
  1104 
       
  1105 lemma mono2mono_lambda: "(\<And>y. monofun (\<lambda>x. f x y)) \<Longrightarrow> monofun f"
       
  1106   by (simp add: monofun_def fun_below_iff)
       
  1107 
       
  1108 lemma cont2cont_lambda [simp]:
       
  1109   assumes f: "\<And>y. cont (\<lambda>x. f x y)"
       
  1110   shows "cont f"
       
  1111   by (rule contI, rule is_lub_lambda, rule contE [OF f])
       
  1112 
       
  1113 text \<open>What D.A.Schmidt calls continuity of abstraction; never used here\<close>
       
  1114 
       
  1115 lemma contlub_lambda: "(\<And>x. chain (\<lambda>i. S i x)) \<Longrightarrow> (\<lambda>x. \<Squnion>i. S i x) = (\<Squnion>i. (\<lambda>x. S i x))"
       
  1116   for S :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo"
       
  1117   by (simp add: lub_fun ch2ch_lambda)
       
  1118 
       
  1119 section \<open>The cpo of cartesian products\<close>
       
  1120 
       
  1121 default_sort cpo
       
  1122 
       
  1123 
       
  1124 subsection \<open>Unit type is a pcpo\<close>
       
  1125 
       
  1126 instantiation unit :: discrete_cpo
       
  1127 begin
       
  1128 
       
  1129 definition below_unit_def [simp]: "x \<sqsubseteq> (y::unit) \<longleftrightarrow> True"
       
  1130 
       
  1131 instance
       
  1132   by standard simp
       
  1133 
       
  1134 end
       
  1135 
       
  1136 instance unit :: pcpo
       
  1137   by standard simp
       
  1138 
       
  1139 
       
  1140 subsection \<open>Product type is a partial order\<close>
       
  1141 
       
  1142 instantiation prod :: (below, below) below
       
  1143 begin
       
  1144 
       
  1145 definition below_prod_def: "(\<sqsubseteq>) \<equiv> \<lambda>p1 p2. (fst p1 \<sqsubseteq> fst p2 \<and> snd p1 \<sqsubseteq> snd p2)"
       
  1146 
       
  1147 instance ..
       
  1148 
       
  1149 end
       
  1150 
       
  1151 instance prod :: (po, po) po
       
  1152 proof
       
  1153   fix x :: "'a \<times> 'b"
       
  1154   show "x \<sqsubseteq> x"
       
  1155     by (simp add: below_prod_def)
       
  1156 next
       
  1157   fix x y :: "'a \<times> 'b"
       
  1158   assume "x \<sqsubseteq> y" "y \<sqsubseteq> x"
       
  1159   then show "x = y"
       
  1160     unfolding below_prod_def prod_eq_iff
       
  1161     by (fast intro: below_antisym)
       
  1162 next
       
  1163   fix x y z :: "'a \<times> 'b"
       
  1164   assume "x \<sqsubseteq> y" "y \<sqsubseteq> z"
       
  1165   then show "x \<sqsubseteq> z"
       
  1166     unfolding below_prod_def
       
  1167     by (fast intro: below_trans)
       
  1168 qed
       
  1169 
       
  1170 
       
  1171 subsection \<open>Monotonicity of \emph{Pair}, \emph{fst}, \emph{snd}\<close>
       
  1172 
       
  1173 lemma prod_belowI: "fst p \<sqsubseteq> fst q \<Longrightarrow> snd p \<sqsubseteq> snd q \<Longrightarrow> p \<sqsubseteq> q"
       
  1174   by (simp add: below_prod_def)
       
  1175 
       
  1176 lemma Pair_below_iff [simp]: "(a, b) \<sqsubseteq> (c, d) \<longleftrightarrow> a \<sqsubseteq> c \<and> b \<sqsubseteq> d"
       
  1177   by (simp add: below_prod_def)
       
  1178 
       
  1179 text \<open>Pair \<open>(_,_)\<close>  is monotone in both arguments\<close>
       
  1180 
       
  1181 lemma monofun_pair1: "monofun (\<lambda>x. (x, y))"
       
  1182   by (simp add: monofun_def)
       
  1183 
       
  1184 lemma monofun_pair2: "monofun (\<lambda>y. (x, y))"
       
  1185   by (simp add: monofun_def)
       
  1186 
       
  1187 lemma monofun_pair: "x1 \<sqsubseteq> x2 \<Longrightarrow> y1 \<sqsubseteq> y2 \<Longrightarrow> (x1, y1) \<sqsubseteq> (x2, y2)"
       
  1188   by simp
       
  1189 
       
  1190 lemma ch2ch_Pair [simp]: "chain X \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. (X i, Y i))"
       
  1191   by (rule chainI, simp add: chainE)
       
  1192 
       
  1193 text \<open>\<^term>\<open>fst\<close> and \<^term>\<open>snd\<close> are monotone\<close>
       
  1194 
       
  1195 lemma fst_monofun: "x \<sqsubseteq> y \<Longrightarrow> fst x \<sqsubseteq> fst y"
       
  1196   by (simp add: below_prod_def)
       
  1197 
       
  1198 lemma snd_monofun: "x \<sqsubseteq> y \<Longrightarrow> snd x \<sqsubseteq> snd y"
       
  1199   by (simp add: below_prod_def)
       
  1200 
       
  1201 lemma monofun_fst: "monofun fst"
       
  1202   by (simp add: monofun_def below_prod_def)
       
  1203 
       
  1204 lemma monofun_snd: "monofun snd"
       
  1205   by (simp add: monofun_def below_prod_def)
       
  1206 
       
  1207 lemmas ch2ch_fst [simp] = ch2ch_monofun [OF monofun_fst]
       
  1208 
       
  1209 lemmas ch2ch_snd [simp] = ch2ch_monofun [OF monofun_snd]
       
  1210 
       
  1211 lemma prod_chain_cases:
       
  1212   assumes chain: "chain Y"
       
  1213   obtains A B
       
  1214   where "chain A" and "chain B" and "Y = (\<lambda>i. (A i, B i))"
       
  1215 proof
       
  1216   from chain show "chain (\<lambda>i. fst (Y i))"
       
  1217     by (rule ch2ch_fst)
       
  1218   from chain show "chain (\<lambda>i. snd (Y i))"
       
  1219     by (rule ch2ch_snd)
       
  1220   show "Y = (\<lambda>i. (fst (Y i), snd (Y i)))"
       
  1221     by simp
       
  1222 qed
       
  1223 
       
  1224 
       
  1225 subsection \<open>Product type is a cpo\<close>
       
  1226 
       
  1227 lemma is_lub_Pair: "range A <<| x \<Longrightarrow> range B <<| y \<Longrightarrow> range (\<lambda>i. (A i, B i)) <<| (x, y)"
       
  1228   by (simp add: is_lub_def is_ub_def below_prod_def)
       
  1229 
       
  1230 lemma lub_Pair: "chain A \<Longrightarrow> chain B \<Longrightarrow> (\<Squnion>i. (A i, B i)) = (\<Squnion>i. A i, \<Squnion>i. B i)"
       
  1231   for A :: "nat \<Rightarrow> 'a::cpo" and B :: "nat \<Rightarrow> 'b::cpo"
       
  1232   by (fast intro: lub_eqI is_lub_Pair elim: thelubE)
       
  1233 
       
  1234 lemma is_lub_prod:
       
  1235   fixes S :: "nat \<Rightarrow> ('a::cpo \<times> 'b::cpo)"
       
  1236   assumes "chain S"
       
  1237   shows "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
       
  1238   using assms by (auto elim: prod_chain_cases simp: is_lub_Pair cpo_lubI)
       
  1239 
       
  1240 lemma lub_prod: "chain S \<Longrightarrow> (\<Squnion>i. S i) = (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
       
  1241   for S :: "nat \<Rightarrow> 'a::cpo \<times> 'b::cpo"
       
  1242   by (rule is_lub_prod [THEN lub_eqI])
       
  1243 
       
  1244 instance prod :: (cpo, cpo) cpo
       
  1245 proof
       
  1246   fix S :: "nat \<Rightarrow> ('a \<times> 'b)"
       
  1247   assume "chain S"
       
  1248   then have "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
       
  1249     by (rule is_lub_prod)
       
  1250   then show "\<exists>x. range S <<| x" ..
       
  1251 qed
       
  1252 
       
  1253 instance prod :: (discrete_cpo, discrete_cpo) discrete_cpo
       
  1254 proof
       
  1255   fix x y :: "'a \<times> 'b"
       
  1256   show "x \<sqsubseteq> y \<longleftrightarrow> x = y"
       
  1257     by (simp add: below_prod_def prod_eq_iff)
       
  1258 qed
       
  1259 
       
  1260 
       
  1261 subsection \<open>Product type is pointed\<close>
       
  1262 
       
  1263 lemma minimal_prod: "(\<bottom>, \<bottom>) \<sqsubseteq> p"
       
  1264   by (simp add: below_prod_def)
       
  1265 
       
  1266 instance prod :: (pcpo, pcpo) pcpo
       
  1267   by intro_classes (fast intro: minimal_prod)
       
  1268 
       
  1269 lemma inst_prod_pcpo: "\<bottom> = (\<bottom>, \<bottom>)"
       
  1270   by (rule minimal_prod [THEN bottomI, symmetric])
       
  1271 
       
  1272 lemma Pair_bottom_iff [simp]: "(x, y) = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>"
       
  1273   by (simp add: inst_prod_pcpo)
       
  1274 
       
  1275 lemma fst_strict [simp]: "fst \<bottom> = \<bottom>"
       
  1276   unfolding inst_prod_pcpo by (rule fst_conv)
       
  1277 
       
  1278 lemma snd_strict [simp]: "snd \<bottom> = \<bottom>"
       
  1279   unfolding inst_prod_pcpo by (rule snd_conv)
       
  1280 
       
  1281 lemma Pair_strict [simp]: "(\<bottom>, \<bottom>) = \<bottom>"
       
  1282   by simp
       
  1283 
       
  1284 lemma split_strict [simp]: "case_prod f \<bottom> = f \<bottom> \<bottom>"
       
  1285   by (simp add: split_def)
       
  1286 
       
  1287 
       
  1288 subsection \<open>Continuity of \emph{Pair}, \emph{fst}, \emph{snd}\<close>
       
  1289 
       
  1290 lemma cont_pair1: "cont (\<lambda>x. (x, y))"
       
  1291   apply (rule contI)
       
  1292   apply (rule is_lub_Pair)
       
  1293    apply (erule cpo_lubI)
       
  1294   apply (rule is_lub_const)
       
  1295   done
       
  1296 
       
  1297 lemma cont_pair2: "cont (\<lambda>y. (x, y))"
       
  1298   apply (rule contI)
       
  1299   apply (rule is_lub_Pair)
       
  1300    apply (rule is_lub_const)
       
  1301   apply (erule cpo_lubI)
       
  1302   done
       
  1303 
       
  1304 lemma cont_fst: "cont fst"
       
  1305   apply (rule contI)
       
  1306   apply (simp add: lub_prod)
       
  1307   apply (erule cpo_lubI [OF ch2ch_fst])
       
  1308   done
       
  1309 
       
  1310 lemma cont_snd: "cont snd"
       
  1311   apply (rule contI)
       
  1312   apply (simp add: lub_prod)
       
  1313   apply (erule cpo_lubI [OF ch2ch_snd])
       
  1314   done
       
  1315 
       
  1316 lemma cont2cont_Pair [simp, cont2cont]:
       
  1317   assumes f: "cont (\<lambda>x. f x)"
       
  1318   assumes g: "cont (\<lambda>x. g x)"
       
  1319   shows "cont (\<lambda>x. (f x, g x))"
       
  1320   apply (rule cont_apply [OF f cont_pair1])
       
  1321   apply (rule cont_apply [OF g cont_pair2])
       
  1322   apply (rule cont_const)
       
  1323   done
       
  1324 
       
  1325 lemmas cont2cont_fst [simp, cont2cont] = cont_compose [OF cont_fst]
       
  1326 
       
  1327 lemmas cont2cont_snd [simp, cont2cont] = cont_compose [OF cont_snd]
       
  1328 
       
  1329 lemma cont2cont_case_prod:
       
  1330   assumes f1: "\<And>a b. cont (\<lambda>x. f x a b)"
       
  1331   assumes f2: "\<And>x b. cont (\<lambda>a. f x a b)"
       
  1332   assumes f3: "\<And>x a. cont (\<lambda>b. f x a b)"
       
  1333   assumes g: "cont (\<lambda>x. g x)"
       
  1334   shows "cont (\<lambda>x. case g x of (a, b) \<Rightarrow> f x a b)"
       
  1335   unfolding split_def
       
  1336   apply (rule cont_apply [OF g])
       
  1337    apply (rule cont_apply [OF cont_fst f2])
       
  1338    apply (rule cont_apply [OF cont_snd f3])
       
  1339    apply (rule cont_const)
       
  1340   apply (rule f1)
       
  1341   done
       
  1342 
       
  1343 lemma prod_contI:
       
  1344   assumes f1: "\<And>y. cont (\<lambda>x. f (x, y))"
       
  1345   assumes f2: "\<And>x. cont (\<lambda>y. f (x, y))"
       
  1346   shows "cont f"
       
  1347 proof -
       
  1348   have "cont (\<lambda>(x, y). f (x, y))"
       
  1349     by (intro cont2cont_case_prod f1 f2 cont2cont)
       
  1350   then show "cont f"
       
  1351     by (simp only: case_prod_eta)
       
  1352 qed
       
  1353 
       
  1354 lemma prod_cont_iff: "cont f \<longleftrightarrow> (\<forall>y. cont (\<lambda>x. f (x, y))) \<and> (\<forall>x. cont (\<lambda>y. f (x, y)))"
       
  1355   apply safe
       
  1356     apply (erule cont_compose [OF _ cont_pair1])
       
  1357    apply (erule cont_compose [OF _ cont_pair2])
       
  1358   apply (simp only: prod_contI)
       
  1359   done
       
  1360 
       
  1361 lemma cont2cont_case_prod' [simp, cont2cont]:
       
  1362   assumes f: "cont (\<lambda>p. f (fst p) (fst (snd p)) (snd (snd p)))"
       
  1363   assumes g: "cont (\<lambda>x. g x)"
       
  1364   shows "cont (\<lambda>x. case_prod (f x) (g x))"
       
  1365   using assms by (simp add: cont2cont_case_prod prod_cont_iff)
       
  1366 
       
  1367 text \<open>The simple version (due to Joachim Breitner) is needed if
       
  1368   either element type of the pair is not a cpo.\<close>
       
  1369 
       
  1370 lemma cont2cont_split_simple [simp, cont2cont]:
       
  1371   assumes "\<And>a b. cont (\<lambda>x. f x a b)"
       
  1372   shows "cont (\<lambda>x. case p of (a, b) \<Rightarrow> f x a b)"
       
  1373   using assms by (cases p) auto
       
  1374 
       
  1375 text \<open>Admissibility of predicates on product types.\<close>
       
  1376 
       
  1377 lemma adm_case_prod [simp]:
       
  1378   assumes "adm (\<lambda>x. P x (fst (f x)) (snd (f x)))"
       
  1379   shows "adm (\<lambda>x. case f x of (a, b) \<Rightarrow> P x a b)"
       
  1380   unfolding case_prod_beta using assms .
       
  1381 
       
  1382 
       
  1383 subsection \<open>Compactness and chain-finiteness\<close>
       
  1384 
       
  1385 lemma fst_below_iff: "fst x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (y, snd x)"
       
  1386   for x :: "'a \<times> 'b"
       
  1387   by (simp add: below_prod_def)
       
  1388 
       
  1389 lemma snd_below_iff: "snd x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (fst x, y)"
       
  1390   for x :: "'a \<times> 'b"
       
  1391   by (simp add: below_prod_def)
       
  1392 
       
  1393 lemma compact_fst: "compact x \<Longrightarrow> compact (fst x)"
       
  1394   by (rule compactI) (simp add: fst_below_iff)
       
  1395 
       
  1396 lemma compact_snd: "compact x \<Longrightarrow> compact (snd x)"
       
  1397   by (rule compactI) (simp add: snd_below_iff)
       
  1398 
       
  1399 lemma compact_Pair: "compact x \<Longrightarrow> compact y \<Longrightarrow> compact (x, y)"
       
  1400   by (rule compactI) (simp add: below_prod_def)
       
  1401 
       
  1402 lemma compact_Pair_iff [simp]: "compact (x, y) \<longleftrightarrow> compact x \<and> compact y"
       
  1403   apply (safe intro!: compact_Pair)
       
  1404    apply (drule compact_fst, simp)
       
  1405   apply (drule compact_snd, simp)
       
  1406   done
       
  1407 
       
  1408 instance prod :: (chfin, chfin) chfin
       
  1409   apply intro_classes
       
  1410   apply (erule compact_imp_max_in_chain)
       
  1411   apply (case_tac "\<Squnion>i. Y i", simp)
       
  1412   done
       
  1413 
       
  1414 section \<open>Discrete cpo types\<close>
       
  1415 
       
  1416 datatype 'a discr = Discr "'a :: type"
       
  1417 
       
  1418 subsection \<open>Discrete cpo class instance\<close>
       
  1419 
       
  1420 instantiation discr :: (type) discrete_cpo
       
  1421 begin
       
  1422 
       
  1423 definition "((\<sqsubseteq>) :: 'a discr \<Rightarrow> 'a discr \<Rightarrow> bool) = (=)"
       
  1424 
       
  1425 instance
       
  1426   by standard (simp add: below_discr_def)
       
  1427 
       
  1428 end
       
  1429 
       
  1430 
       
  1431 subsection \<open>\emph{undiscr}\<close>
       
  1432 
       
  1433 definition undiscr :: "('a::type)discr \<Rightarrow> 'a"
       
  1434   where "undiscr x = (case x of Discr y \<Rightarrow> y)"
       
  1435 
       
  1436 lemma undiscr_Discr [simp]: "undiscr (Discr x) = x"
       
  1437   by (simp add: undiscr_def)
       
  1438 
       
  1439 lemma Discr_undiscr [simp]: "Discr (undiscr y) = y"
       
  1440   by (induct y) simp
       
  1441 
       
  1442 end