|
81575
|
1 |
(* Title: HOL/HOLCF/Cpo.thy
|
|
|
2 |
Author: Franz Regensburger
|
|
|
3 |
Author: Tobias Nipkow
|
|
|
4 |
Author: Brian Huffman
|
|
|
5 |
|
|
|
6 |
Foundations of HOLCF: complete partial orders etc.
|
|
|
7 |
*)
|
|
|
8 |
|
|
|
9 |
theory Cpo
|
|
|
10 |
imports Main
|
|
|
11 |
begin
|
|
|
12 |
|
|
|
13 |
section \<open>Partial orders\<close>
|
|
|
14 |
|
|
|
15 |
declare [[typedef_overloaded]]
|
|
|
16 |
|
|
|
17 |
|
|
|
18 |
subsection \<open>Type class for partial orders\<close>
|
|
|
19 |
|
|
|
20 |
class below =
|
|
|
21 |
fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
|
|
|
22 |
begin
|
|
|
23 |
|
|
|
24 |
notation (ASCII)
|
|
|
25 |
below (infix \<open><<\<close> 50)
|
|
|
26 |
|
|
|
27 |
notation
|
|
|
28 |
below (infix \<open>\<sqsubseteq>\<close> 50)
|
|
|
29 |
|
|
|
30 |
abbreviation not_below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix \<open>\<notsqsubseteq>\<close> 50)
|
|
|
31 |
where "not_below x y \<equiv> \<not> below x y"
|
|
|
32 |
|
|
|
33 |
notation (ASCII)
|
|
|
34 |
not_below (infix \<open>~<<\<close> 50)
|
|
|
35 |
|
|
|
36 |
lemma below_eq_trans: "a \<sqsubseteq> b \<Longrightarrow> b = c \<Longrightarrow> a \<sqsubseteq> c"
|
|
|
37 |
by (rule subst)
|
|
|
38 |
|
|
|
39 |
lemma eq_below_trans: "a = b \<Longrightarrow> b \<sqsubseteq> c \<Longrightarrow> a \<sqsubseteq> c"
|
|
|
40 |
by (rule ssubst)
|
|
|
41 |
|
|
|
42 |
end
|
|
|
43 |
|
|
|
44 |
class po = below +
|
|
|
45 |
assumes below_refl [iff]: "x \<sqsubseteq> x"
|
|
|
46 |
assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"
|
|
|
47 |
assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"
|
|
|
48 |
begin
|
|
|
49 |
|
|
|
50 |
lemma eq_imp_below: "x = y \<Longrightarrow> x \<sqsubseteq> y"
|
|
|
51 |
by simp
|
|
|
52 |
|
|
|
53 |
lemma box_below: "a \<sqsubseteq> b \<Longrightarrow> c \<sqsubseteq> a \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> c \<sqsubseteq> d"
|
|
|
54 |
by (rule below_trans [OF below_trans])
|
|
|
55 |
|
|
|
56 |
lemma po_eq_conv: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"
|
|
|
57 |
by (fast intro!: below_antisym)
|
|
|
58 |
|
|
|
59 |
lemma rev_below_trans: "y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z"
|
|
|
60 |
by (rule below_trans)
|
|
|
61 |
|
|
|
62 |
lemma not_below2not_eq: "x \<notsqsubseteq> y \<Longrightarrow> x \<noteq> y"
|
|
|
63 |
by auto
|
|
|
64 |
|
|
|
65 |
end
|
|
|
66 |
|
|
|
67 |
lemmas HOLCF_trans_rules [trans] =
|
|
|
68 |
below_trans
|
|
|
69 |
below_antisym
|
|
|
70 |
below_eq_trans
|
|
|
71 |
eq_below_trans
|
|
|
72 |
|
|
|
73 |
context po
|
|
|
74 |
begin
|
|
|
75 |
|
|
|
76 |
subsection \<open>Upper bounds\<close>
|
|
|
77 |
|
|
|
78 |
definition is_ub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infix \<open><|\<close> 55)
|
|
|
79 |
where "S <| x \<longleftrightarrow> (\<forall>y\<in>S. y \<sqsubseteq> x)"
|
|
|
80 |
|
|
|
81 |
lemma is_ubI: "(\<And>x. x \<in> S \<Longrightarrow> x \<sqsubseteq> u) \<Longrightarrow> S <| u"
|
|
|
82 |
by (simp add: is_ub_def)
|
|
|
83 |
|
|
|
84 |
lemma is_ubD: "\<lbrakk>S <| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
|
|
|
85 |
by (simp add: is_ub_def)
|
|
|
86 |
|
|
|
87 |
lemma ub_imageI: "(\<And>x. x \<in> S \<Longrightarrow> f x \<sqsubseteq> u) \<Longrightarrow> (\<lambda>x. f x) ` S <| u"
|
|
|
88 |
unfolding is_ub_def by fast
|
|
|
89 |
|
|
|
90 |
lemma ub_imageD: "\<lbrakk>f ` S <| u; x \<in> S\<rbrakk> \<Longrightarrow> f x \<sqsubseteq> u"
|
|
|
91 |
unfolding is_ub_def by fast
|
|
|
92 |
|
|
|
93 |
lemma ub_rangeI: "(\<And>i. S i \<sqsubseteq> x) \<Longrightarrow> range S <| x"
|
|
|
94 |
unfolding is_ub_def by fast
|
|
|
95 |
|
|
|
96 |
lemma ub_rangeD: "range S <| x \<Longrightarrow> S i \<sqsubseteq> x"
|
|
|
97 |
unfolding is_ub_def by fast
|
|
|
98 |
|
|
|
99 |
lemma is_ub_empty [simp]: "{} <| u"
|
|
|
100 |
unfolding is_ub_def by fast
|
|
|
101 |
|
|
|
102 |
lemma is_ub_insert [simp]: "(insert x A) <| y = (x \<sqsubseteq> y \<and> A <| y)"
|
|
|
103 |
unfolding is_ub_def by fast
|
|
|
104 |
|
|
|
105 |
lemma is_ub_upward: "\<lbrakk>S <| x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> S <| y"
|
|
|
106 |
unfolding is_ub_def by (fast intro: below_trans)
|
|
|
107 |
|
|
|
108 |
|
|
|
109 |
subsection \<open>Least upper bounds\<close>
|
|
|
110 |
|
|
|
111 |
definition is_lub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infix \<open><<|\<close> 55)
|
|
|
112 |
where "S <<| x \<longleftrightarrow> S <| x \<and> (\<forall>u. S <| u \<longrightarrow> x \<sqsubseteq> u)"
|
|
|
113 |
|
|
|
114 |
definition lub :: "'a set \<Rightarrow> 'a"
|
|
|
115 |
where "lub S = (THE x. S <<| x)"
|
|
|
116 |
|
|
|
117 |
end
|
|
|
118 |
|
|
|
119 |
syntax (ASCII)
|
|
|
120 |
"_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder LUB\<close>\<close>LUB _:_./ _)\<close> [0,0, 10] 10)
|
|
|
121 |
|
|
|
122 |
syntax
|
|
|
123 |
"_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" (\<open>(\<open>indent=3 notation=\<open>binder \<Squnion>\<close>\<close>\<Squnion>_\<in>_./ _)\<close> [0,0, 10] 10)
|
|
|
124 |
|
|
|
125 |
syntax_consts
|
|
|
126 |
"_BLub" \<rightleftharpoons> lub
|
|
|
127 |
|
|
|
128 |
translations
|
|
|
129 |
"LUB x:A. t" \<rightleftharpoons> "CONST lub ((\<lambda>x. t) ` A)"
|
|
|
130 |
|
|
|
131 |
context po
|
|
|
132 |
begin
|
|
|
133 |
|
|
|
134 |
abbreviation Lub (binder \<open>\<Squnion>\<close> 10)
|
|
|
135 |
where "\<Squnion>n. t n \<equiv> lub (range t)"
|
|
|
136 |
|
|
|
137 |
notation (ASCII)
|
|
|
138 |
Lub (binder \<open>LUB \<close> 10)
|
|
|
139 |
|
|
|
140 |
text \<open>access to some definition as inference rule\<close>
|
|
|
141 |
|
|
|
142 |
lemma is_lubD1: "S <<| x \<Longrightarrow> S <| x"
|
|
|
143 |
unfolding is_lub_def by fast
|
|
|
144 |
|
|
|
145 |
lemma is_lubD2: "\<lbrakk>S <<| x; S <| u\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
|
|
|
146 |
unfolding is_lub_def by fast
|
|
|
147 |
|
|
|
148 |
lemma is_lubI: "\<lbrakk>S <| x; \<And>u. S <| u \<Longrightarrow> x \<sqsubseteq> u\<rbrakk> \<Longrightarrow> S <<| x"
|
|
|
149 |
unfolding is_lub_def by fast
|
|
|
150 |
|
|
|
151 |
lemma is_lub_below_iff: "S <<| x \<Longrightarrow> x \<sqsubseteq> u \<longleftrightarrow> S <| u"
|
|
|
152 |
unfolding is_lub_def is_ub_def by (metis below_trans)
|
|
|
153 |
|
|
|
154 |
text \<open>lubs are unique\<close>
|
|
|
155 |
|
|
|
156 |
lemma is_lub_unique: "S <<| x \<Longrightarrow> S <<| y \<Longrightarrow> x = y"
|
|
|
157 |
unfolding is_lub_def is_ub_def by (blast intro: below_antisym)
|
|
|
158 |
|
|
|
159 |
text \<open>technical lemmas about \<^term>\<open>lub\<close> and \<^term>\<open>is_lub\<close>\<close>
|
|
|
160 |
|
|
|
161 |
lemma is_lub_lub: "M <<| x \<Longrightarrow> M <<| lub M"
|
|
|
162 |
unfolding lub_def by (rule theI [OF _ is_lub_unique])
|
|
|
163 |
|
|
|
164 |
lemma lub_eqI: "M <<| l \<Longrightarrow> lub M = l"
|
|
|
165 |
by (rule is_lub_unique [OF is_lub_lub])
|
|
|
166 |
|
|
|
167 |
lemma is_lub_singleton [simp]: "{x} <<| x"
|
|
|
168 |
by (simp add: is_lub_def)
|
|
|
169 |
|
|
|
170 |
lemma lub_singleton [simp]: "lub {x} = x"
|
|
|
171 |
by (rule is_lub_singleton [THEN lub_eqI])
|
|
|
172 |
|
|
|
173 |
lemma is_lub_bin: "x \<sqsubseteq> y \<Longrightarrow> {x, y} <<| y"
|
|
|
174 |
by (simp add: is_lub_def)
|
|
|
175 |
|
|
|
176 |
lemma lub_bin: "x \<sqsubseteq> y \<Longrightarrow> lub {x, y} = y"
|
|
|
177 |
by (rule is_lub_bin [THEN lub_eqI])
|
|
|
178 |
|
|
|
179 |
lemma is_lub_maximal: "S <| x \<Longrightarrow> x \<in> S \<Longrightarrow> S <<| x"
|
|
|
180 |
by (erule is_lubI, erule (1) is_ubD)
|
|
|
181 |
|
|
|
182 |
lemma lub_maximal: "S <| x \<Longrightarrow> x \<in> S \<Longrightarrow> lub S = x"
|
|
|
183 |
by (rule is_lub_maximal [THEN lub_eqI])
|
|
|
184 |
|
|
|
185 |
|
|
|
186 |
subsection \<open>Countable chains\<close>
|
|
|
187 |
|
|
|
188 |
definition chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool"
|
|
|
189 |
where \<comment> \<open>Here we use countable chains and I prefer to code them as functions!\<close>
|
|
|
190 |
"chain Y = (\<forall>i. Y i \<sqsubseteq> Y (Suc i))"
|
|
|
191 |
|
|
|
192 |
lemma chainI: "(\<And>i. Y i \<sqsubseteq> Y (Suc i)) \<Longrightarrow> chain Y"
|
|
|
193 |
unfolding chain_def by fast
|
|
|
194 |
|
|
|
195 |
lemma chainE: "chain Y \<Longrightarrow> Y i \<sqsubseteq> Y (Suc i)"
|
|
|
196 |
unfolding chain_def by fast
|
|
|
197 |
|
|
|
198 |
text \<open>chains are monotone functions\<close>
|
|
|
199 |
|
|
|
200 |
lemma chain_mono_less: "chain Y \<Longrightarrow> i < j \<Longrightarrow> Y i \<sqsubseteq> Y j"
|
|
|
201 |
by (erule less_Suc_induct, erule chainE, erule below_trans)
|
|
|
202 |
|
|
|
203 |
lemma chain_mono: "chain Y \<Longrightarrow> i \<le> j \<Longrightarrow> Y i \<sqsubseteq> Y j"
|
|
|
204 |
by (cases "i = j") (simp_all add: chain_mono_less)
|
|
|
205 |
|
|
|
206 |
lemma chain_shift: "chain Y \<Longrightarrow> chain (\<lambda>i. Y (i + j))"
|
|
|
207 |
by (rule chainI, simp, erule chainE)
|
|
|
208 |
|
|
|
209 |
text \<open>technical lemmas about (least) upper bounds of chains\<close>
|
|
|
210 |
|
|
|
211 |
lemma is_lub_rangeD1: "range S <<| x \<Longrightarrow> S i \<sqsubseteq> x"
|
|
|
212 |
by (rule is_lubD1 [THEN ub_rangeD])
|
|
|
213 |
|
|
|
214 |
lemma is_ub_range_shift: "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x"
|
|
|
215 |
apply (rule iffI)
|
|
|
216 |
apply (rule ub_rangeI)
|
|
|
217 |
apply (rule_tac y="S (i + j)" in below_trans)
|
|
|
218 |
apply (erule chain_mono)
|
|
|
219 |
apply (rule le_add1)
|
|
|
220 |
apply (erule ub_rangeD)
|
|
|
221 |
apply (rule ub_rangeI)
|
|
|
222 |
apply (erule ub_rangeD)
|
|
|
223 |
done
|
|
|
224 |
|
|
|
225 |
lemma is_lub_range_shift: "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x"
|
|
|
226 |
by (simp add: is_lub_def is_ub_range_shift)
|
|
|
227 |
|
|
|
228 |
text \<open>the lub of a constant chain is the constant\<close>
|
|
|
229 |
|
|
|
230 |
lemma chain_const [simp]: "chain (\<lambda>i. c)"
|
|
|
231 |
by (simp add: chainI)
|
|
|
232 |
|
|
|
233 |
lemma is_lub_const: "range (\<lambda>x. c) <<| c"
|
|
|
234 |
by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)
|
|
|
235 |
|
|
|
236 |
lemma lub_const [simp]: "(\<Squnion>i. c) = c"
|
|
|
237 |
by (rule is_lub_const [THEN lub_eqI])
|
|
|
238 |
|
|
|
239 |
|
|
|
240 |
subsection \<open>Finite chains\<close>
|
|
|
241 |
|
|
|
242 |
definition max_in_chain :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool"
|
|
|
243 |
where \<comment> \<open>finite chains, needed for monotony of continuous functions\<close>
|
|
|
244 |
"max_in_chain i C \<longleftrightarrow> (\<forall>j. i \<le> j \<longrightarrow> C i = C j)"
|
|
|
245 |
|
|
|
246 |
definition finite_chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool"
|
|
|
247 |
where "finite_chain C = (chain C \<and> (\<exists>i. max_in_chain i C))"
|
|
|
248 |
|
|
|
249 |
text \<open>results about finite chains\<close>
|
|
|
250 |
|
|
|
251 |
lemma max_in_chainI: "(\<And>j. i \<le> j \<Longrightarrow> Y i = Y j) \<Longrightarrow> max_in_chain i Y"
|
|
|
252 |
unfolding max_in_chain_def by fast
|
|
|
253 |
|
|
|
254 |
lemma max_in_chainD: "max_in_chain i Y \<Longrightarrow> i \<le> j \<Longrightarrow> Y i = Y j"
|
|
|
255 |
unfolding max_in_chain_def by fast
|
|
|
256 |
|
|
|
257 |
lemma finite_chainI: "chain C \<Longrightarrow> max_in_chain i C \<Longrightarrow> finite_chain C"
|
|
|
258 |
unfolding finite_chain_def by fast
|
|
|
259 |
|
|
|
260 |
lemma finite_chainE: "\<lbrakk>finite_chain C; \<And>i. \<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
|
|
|
261 |
unfolding finite_chain_def by fast
|
|
|
262 |
|
|
|
263 |
lemma lub_finch1: "chain C \<Longrightarrow> max_in_chain i C \<Longrightarrow> range C <<| C i"
|
|
|
264 |
apply (rule is_lubI)
|
|
|
265 |
apply (rule ub_rangeI, rename_tac j)
|
|
|
266 |
apply (rule_tac x=i and y=j in linorder_le_cases)
|
|
|
267 |
apply (drule (1) max_in_chainD, simp)
|
|
|
268 |
apply (erule (1) chain_mono)
|
|
|
269 |
apply (erule ub_rangeD)
|
|
|
270 |
done
|
|
|
271 |
|
|
|
272 |
lemma lub_finch2: "finite_chain C \<Longrightarrow> range C <<| C (LEAST i. max_in_chain i C)"
|
|
|
273 |
apply (erule finite_chainE)
|
|
|
274 |
apply (erule LeastI2 [where Q="\<lambda>i. range C <<| C i"])
|
|
|
275 |
apply (erule (1) lub_finch1)
|
|
|
276 |
done
|
|
|
277 |
|
|
|
278 |
lemma finch_imp_finite_range: "finite_chain Y \<Longrightarrow> finite (range Y)"
|
|
|
279 |
apply (erule finite_chainE)
|
|
|
280 |
apply (rule_tac B="Y ` {..i}" in finite_subset)
|
|
|
281 |
apply (rule subsetI)
|
|
|
282 |
apply (erule rangeE, rename_tac j)
|
|
|
283 |
apply (rule_tac x=i and y=j in linorder_le_cases)
|
|
|
284 |
apply (subgoal_tac "Y j = Y i", simp)
|
|
|
285 |
apply (simp add: max_in_chain_def)
|
|
|
286 |
apply simp
|
|
|
287 |
apply simp
|
|
|
288 |
done
|
|
|
289 |
|
|
|
290 |
lemma finite_range_has_max:
|
|
|
291 |
fixes f :: "nat \<Rightarrow> 'a"
|
|
|
292 |
and r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
|
|
|
293 |
assumes mono: "\<And>i j. i \<le> j \<Longrightarrow> r (f i) (f j)"
|
|
|
294 |
assumes finite_range: "finite (range f)"
|
|
|
295 |
shows "\<exists>k. \<forall>i. r (f i) (f k)"
|
|
|
296 |
proof (intro exI allI)
|
|
|
297 |
fix i :: nat
|
|
|
298 |
let ?j = "LEAST k. f k = f i"
|
|
|
299 |
let ?k = "Max ((\<lambda>x. LEAST k. f k = x) ` range f)"
|
|
|
300 |
have "?j \<le> ?k"
|
|
|
301 |
proof (rule Max_ge)
|
|
|
302 |
show "finite ((\<lambda>x. LEAST k. f k = x) ` range f)"
|
|
|
303 |
using finite_range by (rule finite_imageI)
|
|
|
304 |
show "?j \<in> (\<lambda>x. LEAST k. f k = x) ` range f"
|
|
|
305 |
by (intro imageI rangeI)
|
|
|
306 |
qed
|
|
|
307 |
hence "r (f ?j) (f ?k)"
|
|
|
308 |
by (rule mono)
|
|
|
309 |
also have "f ?j = f i"
|
|
|
310 |
by (rule LeastI, rule refl)
|
|
|
311 |
finally show "r (f i) (f ?k)" .
|
|
|
312 |
qed
|
|
|
313 |
|
|
|
314 |
lemma finite_range_imp_finch: "chain Y \<Longrightarrow> finite (range Y) \<Longrightarrow> finite_chain Y"
|
|
|
315 |
apply (subgoal_tac "\<exists>k. \<forall>i. Y i \<sqsubseteq> Y k")
|
|
|
316 |
apply (erule exE)
|
|
|
317 |
apply (rule finite_chainI, assumption)
|
|
|
318 |
apply (rule max_in_chainI)
|
|
|
319 |
apply (rule below_antisym)
|
|
|
320 |
apply (erule (1) chain_mono)
|
|
|
321 |
apply (erule spec)
|
|
|
322 |
apply (rule finite_range_has_max)
|
|
|
323 |
apply (erule (1) chain_mono)
|
|
|
324 |
apply assumption
|
|
|
325 |
done
|
|
|
326 |
|
|
|
327 |
lemma bin_chain: "x \<sqsubseteq> y \<Longrightarrow> chain (\<lambda>i. if i=0 then x else y)"
|
|
|
328 |
by (rule chainI) simp
|
|
|
329 |
|
|
|
330 |
lemma bin_chainmax: "x \<sqsubseteq> y \<Longrightarrow> max_in_chain (Suc 0) (\<lambda>i. if i=0 then x else y)"
|
|
|
331 |
by (simp add: max_in_chain_def)
|
|
|
332 |
|
|
|
333 |
lemma is_lub_bin_chain: "x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. if i=0 then x else y) <<| y"
|
|
|
334 |
apply (frule bin_chain)
|
|
|
335 |
apply (drule bin_chainmax)
|
|
|
336 |
apply (drule (1) lub_finch1)
|
|
|
337 |
apply simp
|
|
|
338 |
done
|
|
|
339 |
|
|
|
340 |
text \<open>the maximal element in a chain is its lub\<close>
|
|
|
341 |
|
|
|
342 |
lemma lub_chain_maxelem: "Y i = c \<Longrightarrow> \<forall>i. Y i \<sqsubseteq> c \<Longrightarrow> lub (range Y) = c"
|
|
|
343 |
by (blast dest: ub_rangeD intro: lub_eqI is_lubI ub_rangeI)
|
|
|
344 |
|
|
|
345 |
end
|
|
|
346 |
|
|
|
347 |
|
|
|
348 |
section \<open>Classes cpo and pcpo\<close>
|
|
|
349 |
|
|
|
350 |
subsection \<open>Complete partial orders\<close>
|
|
|
351 |
|
|
|
352 |
text \<open>The class cpo of chain complete partial orders\<close>
|
|
|
353 |
|
|
|
354 |
class cpo = po +
|
|
|
355 |
assumes cpo: "chain S \<Longrightarrow> \<exists>x. range S <<| x"
|
|
|
356 |
begin
|
|
|
357 |
|
|
|
358 |
text \<open>in cpo's everthing equal to THE lub has lub properties for every chain\<close>
|
|
|
359 |
|
|
|
360 |
lemma cpo_lubI: "chain S \<Longrightarrow> range S <<| (\<Squnion>i. S i)"
|
|
|
361 |
by (fast dest: cpo elim: is_lub_lub)
|
|
|
362 |
|
|
|
363 |
lemma thelubE: "\<lbrakk>chain S; (\<Squnion>i. S i) = l\<rbrakk> \<Longrightarrow> range S <<| l"
|
|
|
364 |
by (blast dest: cpo intro: is_lub_lub)
|
|
|
365 |
|
|
|
366 |
text \<open>Properties of the lub\<close>
|
|
|
367 |
|
|
|
368 |
lemma is_ub_thelub: "chain S \<Longrightarrow> S x \<sqsubseteq> (\<Squnion>i. S i)"
|
|
|
369 |
by (blast dest: cpo intro: is_lub_lub [THEN is_lub_rangeD1])
|
|
|
370 |
|
|
|
371 |
lemma is_lub_thelub: "\<lbrakk>chain S; range S <| x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x"
|
|
|
372 |
by (blast dest: cpo intro: is_lub_lub [THEN is_lubD2])
|
|
|
373 |
|
|
|
374 |
lemma lub_below_iff: "chain S \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x \<longleftrightarrow> (\<forall>i. S i \<sqsubseteq> x)"
|
|
|
375 |
by (simp add: is_lub_below_iff [OF cpo_lubI] is_ub_def)
|
|
|
376 |
|
|
|
377 |
lemma lub_below: "\<lbrakk>chain S; \<And>i. S i \<sqsubseteq> x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x"
|
|
|
378 |
by (simp add: lub_below_iff)
|
|
|
379 |
|
|
|
380 |
lemma below_lub: "\<lbrakk>chain S; x \<sqsubseteq> S i\<rbrakk> \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. S i)"
|
|
|
381 |
by (erule below_trans, erule is_ub_thelub)
|
|
|
382 |
|
|
|
383 |
lemma lub_range_mono: "\<lbrakk>range X \<subseteq> range Y; chain Y; chain X\<rbrakk> \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
|
|
|
384 |
apply (erule lub_below)
|
|
|
385 |
apply (subgoal_tac "\<exists>j. X i = Y j")
|
|
|
386 |
apply clarsimp
|
|
|
387 |
apply (erule is_ub_thelub)
|
|
|
388 |
apply auto
|
|
|
389 |
done
|
|
|
390 |
|
|
|
391 |
lemma lub_range_shift: "chain Y \<Longrightarrow> (\<Squnion>i. Y (i + j)) = (\<Squnion>i. Y i)"
|
|
|
392 |
apply (rule below_antisym)
|
|
|
393 |
apply (rule lub_range_mono)
|
|
|
394 |
apply fast
|
|
|
395 |
apply assumption
|
|
|
396 |
apply (erule chain_shift)
|
|
|
397 |
apply (rule lub_below)
|
|
|
398 |
apply assumption
|
|
|
399 |
apply (rule_tac i="i" in below_lub)
|
|
|
400 |
apply (erule chain_shift)
|
|
|
401 |
apply (erule chain_mono)
|
|
|
402 |
apply (rule le_add1)
|
|
|
403 |
done
|
|
|
404 |
|
|
|
405 |
lemma maxinch_is_thelub: "chain Y \<Longrightarrow> max_in_chain i Y = ((\<Squnion>i. Y i) = Y i)"
|
|
|
406 |
apply (rule iffI)
|
|
|
407 |
apply (fast intro!: lub_eqI lub_finch1)
|
|
|
408 |
apply (unfold max_in_chain_def)
|
|
|
409 |
apply (safe intro!: below_antisym)
|
|
|
410 |
apply (fast elim!: chain_mono)
|
|
|
411 |
apply (drule sym)
|
|
|
412 |
apply (force elim!: is_ub_thelub)
|
|
|
413 |
done
|
|
|
414 |
|
|
|
415 |
text \<open>the \<open>\<sqsubseteq>\<close> relation between two chains is preserved by their lubs\<close>
|
|
|
416 |
|
|
|
417 |
lemma lub_mono: "\<lbrakk>chain X; chain Y; \<And>i. X i \<sqsubseteq> Y i\<rbrakk> \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
|
|
|
418 |
by (fast elim: lub_below below_lub)
|
|
|
419 |
|
|
|
420 |
text \<open>the = relation between two chains is preserved by their lubs\<close>
|
|
|
421 |
|
|
|
422 |
lemma lub_eq: "(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
|
|
|
423 |
by simp
|
|
|
424 |
|
|
|
425 |
lemma ch2ch_lub:
|
|
|
426 |
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
|
|
|
427 |
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
|
|
|
428 |
shows "chain (\<lambda>i. \<Squnion>j. Y i j)"
|
|
|
429 |
apply (rule chainI)
|
|
|
430 |
apply (rule lub_mono [OF 2 2])
|
|
|
431 |
apply (rule chainE [OF 1])
|
|
|
432 |
done
|
|
|
433 |
|
|
|
434 |
lemma diag_lub:
|
|
|
435 |
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
|
|
|
436 |
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
|
|
|
437 |
shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>i. Y i i)"
|
|
|
438 |
proof (rule below_antisym)
|
|
|
439 |
have 3: "chain (\<lambda>i. Y i i)"
|
|
|
440 |
apply (rule chainI)
|
|
|
441 |
apply (rule below_trans)
|
|
|
442 |
apply (rule chainE [OF 1])
|
|
|
443 |
apply (rule chainE [OF 2])
|
|
|
444 |
done
|
|
|
445 |
have 4: "chain (\<lambda>i. \<Squnion>j. Y i j)"
|
|
|
446 |
by (rule ch2ch_lub [OF 1 2])
|
|
|
447 |
show "(\<Squnion>i. \<Squnion>j. Y i j) \<sqsubseteq> (\<Squnion>i. Y i i)"
|
|
|
448 |
apply (rule lub_below [OF 4])
|
|
|
449 |
apply (rule lub_below [OF 2])
|
|
|
450 |
apply (rule below_lub [OF 3])
|
|
|
451 |
apply (rule below_trans)
|
|
|
452 |
apply (rule chain_mono [OF 1 max.cobounded1])
|
|
|
453 |
apply (rule chain_mono [OF 2 max.cobounded2])
|
|
|
454 |
done
|
|
|
455 |
show "(\<Squnion>i. Y i i) \<sqsubseteq> (\<Squnion>i. \<Squnion>j. Y i j)"
|
|
|
456 |
apply (rule lub_mono [OF 3 4])
|
|
|
457 |
apply (rule is_ub_thelub [OF 2])
|
|
|
458 |
done
|
|
|
459 |
qed
|
|
|
460 |
|
|
|
461 |
lemma ex_lub:
|
|
|
462 |
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
|
|
|
463 |
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
|
|
|
464 |
shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>j. \<Squnion>i. Y i j)"
|
|
|
465 |
by (simp add: diag_lub 1 2)
|
|
|
466 |
|
|
|
467 |
end
|
|
|
468 |
|
|
|
469 |
|
|
|
470 |
subsection \<open>Pointed cpos\<close>
|
|
|
471 |
|
|
|
472 |
text \<open>The class pcpo of pointed cpos\<close>
|
|
|
473 |
|
|
|
474 |
class pcpo = cpo +
|
|
|
475 |
assumes least: "\<exists>x. \<forall>y. x \<sqsubseteq> y"
|
|
|
476 |
begin
|
|
|
477 |
|
|
|
478 |
definition bottom :: "'a" (\<open>\<bottom>\<close>)
|
|
|
479 |
where "bottom = (THE x. \<forall>y. x \<sqsubseteq> y)"
|
|
|
480 |
|
|
|
481 |
lemma minimal [iff]: "\<bottom> \<sqsubseteq> x"
|
|
|
482 |
unfolding bottom_def
|
|
|
483 |
apply (rule the1I2)
|
|
|
484 |
apply (rule ex_ex1I)
|
|
|
485 |
apply (rule least)
|
|
|
486 |
apply (blast intro: below_antisym)
|
|
|
487 |
apply simp
|
|
|
488 |
done
|
|
|
489 |
|
|
|
490 |
end
|
|
|
491 |
|
|
|
492 |
text \<open>Old "UU" syntax:\<close>
|
|
|
493 |
abbreviation (input) "UU \<equiv> bottom"
|
|
|
494 |
|
|
|
495 |
text \<open>Simproc to rewrite \<^term>\<open>\<bottom> = x\<close> to \<^term>\<open>x = \<bottom>\<close>.\<close>
|
|
|
496 |
setup \<open>Reorient_Proc.add (fn \<^Const_>\<open>bottom _\<close> => true | _ => false)\<close>
|
|
|
497 |
simproc_setup reorient_bottom ("\<bottom> = x") = \<open>K Reorient_Proc.proc\<close>
|
|
|
498 |
|
|
|
499 |
text \<open>useful lemmas about \<^term>\<open>\<bottom>\<close>\<close>
|
|
|
500 |
|
|
|
501 |
lemma below_bottom_iff [simp]: "x \<sqsubseteq> \<bottom> \<longleftrightarrow> x = \<bottom>"
|
|
|
502 |
by (simp add: po_eq_conv)
|
|
|
503 |
|
|
|
504 |
lemma eq_bottom_iff: "x = \<bottom> \<longleftrightarrow> x \<sqsubseteq> \<bottom>"
|
|
|
505 |
by simp
|
|
|
506 |
|
|
|
507 |
lemma bottomI: "x \<sqsubseteq> \<bottom> \<Longrightarrow> x = \<bottom>"
|
|
|
508 |
by (subst eq_bottom_iff)
|
|
|
509 |
|
|
|
510 |
lemma lub_eq_bottom_iff: "chain Y \<Longrightarrow> (\<Squnion>i. Y i) = \<bottom> \<longleftrightarrow> (\<forall>i. Y i = \<bottom>)"
|
|
|
511 |
by (simp only: eq_bottom_iff lub_below_iff)
|
|
|
512 |
|
|
|
513 |
|
|
|
514 |
subsection \<open>Chain-finite and flat cpos\<close>
|
|
|
515 |
|
|
|
516 |
text \<open>further useful classes for HOLCF domains\<close>
|
|
|
517 |
|
|
|
518 |
class chfin = po +
|
|
|
519 |
assumes chfin: "chain Y \<Longrightarrow> \<exists>n. max_in_chain n Y"
|
|
|
520 |
begin
|
|
|
521 |
|
|
|
522 |
subclass cpo
|
|
|
523 |
apply standard
|
|
|
524 |
apply (frule chfin)
|
|
|
525 |
apply (blast intro: lub_finch1)
|
|
|
526 |
done
|
|
|
527 |
|
|
|
528 |
lemma chfin2finch: "chain Y \<Longrightarrow> finite_chain Y"
|
|
|
529 |
by (simp add: chfin finite_chain_def)
|
|
|
530 |
|
|
|
531 |
end
|
|
|
532 |
|
|
|
533 |
class flat = pcpo +
|
|
|
534 |
assumes ax_flat: "x \<sqsubseteq> y \<Longrightarrow> x = \<bottom> \<or> x = y"
|
|
|
535 |
begin
|
|
|
536 |
|
|
|
537 |
subclass chfin
|
|
|
538 |
proof
|
|
|
539 |
fix Y
|
|
|
540 |
assume *: "chain Y"
|
|
|
541 |
show "\<exists>n. max_in_chain n Y"
|
|
|
542 |
apply (unfold max_in_chain_def)
|
|
|
543 |
apply (cases "\<forall>i. Y i = \<bottom>")
|
|
|
544 |
apply simp
|
|
|
545 |
apply simp
|
|
|
546 |
apply (erule exE)
|
|
|
547 |
apply (rule_tac x="i" in exI)
|
|
|
548 |
apply clarify
|
|
|
549 |
using * apply (blast dest: chain_mono ax_flat)
|
|
|
550 |
done
|
|
|
551 |
qed
|
|
|
552 |
|
|
|
553 |
lemma flat_below_iff: "x \<sqsubseteq> y \<longleftrightarrow> x = \<bottom> \<or> x = y"
|
|
|
554 |
by (safe dest!: ax_flat)
|
|
|
555 |
|
|
|
556 |
lemma flat_eq: "a \<noteq> \<bottom> \<Longrightarrow> a \<sqsubseteq> b = (a = b)"
|
|
|
557 |
by (safe dest!: ax_flat)
|
|
|
558 |
|
|
|
559 |
end
|
|
|
560 |
|
|
|
561 |
subsection \<open>Discrete cpos\<close>
|
|
|
562 |
|
|
|
563 |
class discrete_cpo = below +
|
|
|
564 |
assumes discrete_cpo [simp]: "x \<sqsubseteq> y \<longleftrightarrow> x = y"
|
|
|
565 |
begin
|
|
|
566 |
|
|
|
567 |
subclass po
|
|
|
568 |
by standard simp_all
|
|
|
569 |
|
|
|
570 |
text \<open>In a discrete cpo, every chain is constant\<close>
|
|
|
571 |
|
|
|
572 |
lemma discrete_chain_const:
|
|
|
573 |
assumes S: "chain S"
|
|
|
574 |
shows "\<exists>x. S = (\<lambda>i. x)"
|
|
|
575 |
proof (intro exI ext)
|
|
|
576 |
fix i :: nat
|
|
|
577 |
from S le0 have "S 0 \<sqsubseteq> S i" by (rule chain_mono)
|
|
|
578 |
then have "S 0 = S i" by simp
|
|
|
579 |
then show "S i = S 0" by (rule sym)
|
|
|
580 |
qed
|
|
|
581 |
|
|
|
582 |
subclass chfin
|
|
|
583 |
proof
|
|
|
584 |
fix S :: "nat \<Rightarrow> 'a"
|
|
|
585 |
assume S: "chain S"
|
|
|
586 |
then have "\<exists>x. S = (\<lambda>i. x)"
|
|
|
587 |
by (rule discrete_chain_const)
|
|
|
588 |
then have "max_in_chain 0 S"
|
|
|
589 |
by (auto simp: max_in_chain_def)
|
|
|
590 |
then show "\<exists>i. max_in_chain i S" ..
|
|
|
591 |
qed
|
|
|
592 |
|
|
|
593 |
end
|
|
|
594 |
|
|
|
595 |
|
|
|
596 |
section \<open>Continuity and monotonicity\<close>
|
|
|
597 |
|
|
|
598 |
text \<open>
|
|
|
599 |
Now we change the default class! Form now on all untyped type variables are
|
|
|
600 |
of default class po
|
|
|
601 |
\<close>
|
|
|
602 |
|
|
|
603 |
default_sort po
|
|
|
604 |
|
|
|
605 |
subsection \<open>Definitions\<close>
|
|
|
606 |
|
|
|
607 |
definition monofun :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" \<comment> \<open>monotonicity\<close>
|
|
|
608 |
where "monofun f \<longleftrightarrow> (\<forall>x y. x \<sqsubseteq> y \<longrightarrow> f x \<sqsubseteq> f y)"
|
|
|
609 |
|
|
|
610 |
definition cont :: "('a::cpo \<Rightarrow> 'b::cpo) \<Rightarrow> bool"
|
|
|
611 |
where "cont f = (\<forall>Y. chain Y \<longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i))"
|
|
|
612 |
|
|
|
613 |
lemma contI: "(\<And>Y. chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)) \<Longrightarrow> cont f"
|
|
|
614 |
by (simp add: cont_def)
|
|
|
615 |
|
|
|
616 |
lemma contE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)"
|
|
|
617 |
by (simp add: cont_def)
|
|
|
618 |
|
|
|
619 |
lemma monofunI: "(\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y) \<Longrightarrow> monofun f"
|
|
|
620 |
by (simp add: monofun_def)
|
|
|
621 |
|
|
|
622 |
lemma monofunE: "monofun f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
|
|
|
623 |
by (simp add: monofun_def)
|
|
|
624 |
|
|
|
625 |
|
|
|
626 |
subsection \<open>Equivalence of alternate definition\<close>
|
|
|
627 |
|
|
|
628 |
text \<open>monotone functions map chains to chains\<close>
|
|
|
629 |
|
|
|
630 |
lemma ch2ch_monofun: "monofun f \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. f (Y i))"
|
|
|
631 |
apply (rule chainI)
|
|
|
632 |
apply (erule monofunE)
|
|
|
633 |
apply (erule chainE)
|
|
|
634 |
done
|
|
|
635 |
|
|
|
636 |
text \<open>monotone functions map upper bound to upper bounds\<close>
|
|
|
637 |
|
|
|
638 |
lemma ub2ub_monofun: "monofun f \<Longrightarrow> range Y <| u \<Longrightarrow> range (\<lambda>i. f (Y i)) <| f u"
|
|
|
639 |
apply (rule ub_rangeI)
|
|
|
640 |
apply (erule monofunE)
|
|
|
641 |
apply (erule ub_rangeD)
|
|
|
642 |
done
|
|
|
643 |
|
|
|
644 |
text \<open>a lemma about binary chains\<close>
|
|
|
645 |
|
|
|
646 |
lemma binchain_cont: "cont f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. f (if i = 0 then x else y)) <<| f y"
|
|
|
647 |
apply (subgoal_tac "f (\<Squnion>i::nat. if i = 0 then x else y) = f y")
|
|
|
648 |
apply (erule subst)
|
|
|
649 |
apply (erule contE)
|
|
|
650 |
apply (erule bin_chain)
|
|
|
651 |
apply (rule_tac f=f in arg_cong)
|
|
|
652 |
apply (erule is_lub_bin_chain [THEN lub_eqI])
|
|
|
653 |
done
|
|
|
654 |
|
|
|
655 |
text \<open>continuity implies monotonicity\<close>
|
|
|
656 |
|
|
|
657 |
lemma cont2mono: "cont f \<Longrightarrow> monofun f"
|
|
|
658 |
apply (rule monofunI)
|
|
|
659 |
apply (drule (1) binchain_cont)
|
|
|
660 |
apply (drule_tac i=0 in is_lub_rangeD1)
|
|
|
661 |
apply simp
|
|
|
662 |
done
|
|
|
663 |
|
|
|
664 |
lemmas cont2monofunE = cont2mono [THEN monofunE]
|
|
|
665 |
|
|
|
666 |
lemmas ch2ch_cont = cont2mono [THEN ch2ch_monofun]
|
|
|
667 |
|
|
|
668 |
text \<open>continuity implies preservation of lubs\<close>
|
|
|
669 |
|
|
|
670 |
lemma cont2contlubE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> f (\<Squnion>i. Y i) = (\<Squnion>i. f (Y i))"
|
|
|
671 |
apply (rule lub_eqI [symmetric])
|
|
|
672 |
apply (erule (1) contE)
|
|
|
673 |
done
|
|
|
674 |
|
|
|
675 |
lemma contI2:
|
|
|
676 |
fixes f :: "'a::cpo \<Rightarrow> 'b::cpo"
|
|
|
677 |
assumes mono: "monofun f"
|
|
|
678 |
assumes below: "\<And>Y. \<lbrakk>chain Y; chain (\<lambda>i. f (Y i))\<rbrakk> \<Longrightarrow> f (\<Squnion>i. Y i) \<sqsubseteq> (\<Squnion>i. f (Y i))"
|
|
|
679 |
shows "cont f"
|
|
|
680 |
proof (rule contI)
|
|
|
681 |
fix Y :: "nat \<Rightarrow> 'a"
|
|
|
682 |
assume Y: "chain Y"
|
|
|
683 |
with mono have fY: "chain (\<lambda>i. f (Y i))"
|
|
|
684 |
by (rule ch2ch_monofun)
|
|
|
685 |
have "(\<Squnion>i. f (Y i)) = f (\<Squnion>i. Y i)"
|
|
|
686 |
apply (rule below_antisym)
|
|
|
687 |
apply (rule lub_below [OF fY])
|
|
|
688 |
apply (rule monofunE [OF mono])
|
|
|
689 |
apply (rule is_ub_thelub [OF Y])
|
|
|
690 |
apply (rule below [OF Y fY])
|
|
|
691 |
done
|
|
|
692 |
with fY show "range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)"
|
|
|
693 |
by (rule thelubE)
|
|
|
694 |
qed
|
|
|
695 |
|
|
|
696 |
|
|
|
697 |
subsection \<open>Collection of continuity rules\<close>
|
|
|
698 |
|
|
|
699 |
named_theorems cont2cont "continuity intro rule"
|
|
|
700 |
|
|
|
701 |
|
|
|
702 |
subsection \<open>Continuity of basic functions\<close>
|
|
|
703 |
|
|
|
704 |
text \<open>The identity function is continuous\<close>
|
|
|
705 |
|
|
|
706 |
lemma cont_id [simp, cont2cont]: "cont (\<lambda>x. x)"
|
|
|
707 |
apply (rule contI)
|
|
|
708 |
apply (erule cpo_lubI)
|
|
|
709 |
done
|
|
|
710 |
|
|
|
711 |
text \<open>constant functions are continuous\<close>
|
|
|
712 |
|
|
|
713 |
lemma cont_const [simp, cont2cont]: "cont (\<lambda>x. c)"
|
|
|
714 |
using is_lub_const by (rule contI)
|
|
|
715 |
|
|
|
716 |
text \<open>application of functions is continuous\<close>
|
|
|
717 |
|
|
|
718 |
lemma cont_apply:
|
|
|
719 |
fixes f :: "'a::cpo \<Rightarrow> 'b::cpo \<Rightarrow> 'c::cpo" and t :: "'a \<Rightarrow> 'b"
|
|
|
720 |
assumes 1: "cont (\<lambda>x. t x)"
|
|
|
721 |
assumes 2: "\<And>x. cont (\<lambda>y. f x y)"
|
|
|
722 |
assumes 3: "\<And>y. cont (\<lambda>x. f x y)"
|
|
|
723 |
shows "cont (\<lambda>x. (f x) (t x))"
|
|
|
724 |
proof (rule contI2 [OF monofunI])
|
|
|
725 |
fix x y :: "'a"
|
|
|
726 |
assume "x \<sqsubseteq> y"
|
|
|
727 |
then show "f x (t x) \<sqsubseteq> f y (t y)"
|
|
|
728 |
by (auto intro: cont2monofunE [OF 1]
|
|
|
729 |
cont2monofunE [OF 2]
|
|
|
730 |
cont2monofunE [OF 3]
|
|
|
731 |
below_trans)
|
|
|
732 |
next
|
|
|
733 |
fix Y :: "nat \<Rightarrow> 'a"
|
|
|
734 |
assume "chain Y"
|
|
|
735 |
then show "f (\<Squnion>i. Y i) (t (\<Squnion>i. Y i)) \<sqsubseteq> (\<Squnion>i. f (Y i) (t (Y i)))"
|
|
|
736 |
by (simp only: cont2contlubE [OF 1] ch2ch_cont [OF 1]
|
|
|
737 |
cont2contlubE [OF 2] ch2ch_cont [OF 2]
|
|
|
738 |
cont2contlubE [OF 3] ch2ch_cont [OF 3]
|
|
|
739 |
diag_lub below_refl)
|
|
|
740 |
qed
|
|
|
741 |
|
|
|
742 |
lemma cont_compose: "cont c \<Longrightarrow> cont (\<lambda>x. f x) \<Longrightarrow> cont (\<lambda>x. c (f x))"
|
|
|
743 |
by (rule cont_apply [OF _ _ cont_const])
|
|
|
744 |
|
|
|
745 |
text \<open>Least upper bounds preserve continuity\<close>
|
|
|
746 |
|
|
|
747 |
lemma cont2cont_lub [simp]:
|
|
|
748 |
assumes chain: "\<And>x. chain (\<lambda>i. F i x)"
|
|
|
749 |
and cont: "\<And>i. cont (\<lambda>x. F i x)"
|
|
|
750 |
shows "cont (\<lambda>x. \<Squnion>i. F i x)"
|
|
|
751 |
apply (rule contI2)
|
|
|
752 |
apply (simp add: monofunI cont2monofunE [OF cont] lub_mono chain)
|
|
|
753 |
apply (simp add: cont2contlubE [OF cont])
|
|
|
754 |
apply (simp add: diag_lub ch2ch_cont [OF cont] chain)
|
|
|
755 |
done
|
|
|
756 |
|
|
|
757 |
text \<open>if-then-else is continuous\<close>
|
|
|
758 |
|
|
|
759 |
lemma cont_if [simp, cont2cont]: "cont f \<Longrightarrow> cont g \<Longrightarrow> cont (\<lambda>x. if b then f x else g x)"
|
|
|
760 |
by (induct b) simp_all
|
|
|
761 |
|
|
|
762 |
|
|
|
763 |
subsection \<open>Finite chains and flat pcpos\<close>
|
|
|
764 |
|
|
|
765 |
text \<open>Monotone functions map finite chains to finite chains.\<close>
|
|
|
766 |
|
|
|
767 |
lemma monofun_finch2finch: "monofun f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))"
|
|
|
768 |
by (force simp add: finite_chain_def ch2ch_monofun max_in_chain_def)
|
|
|
769 |
|
|
|
770 |
text \<open>The same holds for continuous functions.\<close>
|
|
|
771 |
|
|
|
772 |
lemma cont_finch2finch: "cont f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))"
|
|
|
773 |
by (rule cont2mono [THEN monofun_finch2finch])
|
|
|
774 |
|
|
|
775 |
text \<open>All monotone functions with chain-finite domain are continuous.\<close>
|
|
|
776 |
|
|
|
777 |
lemma chfindom_monofun2cont: "monofun f \<Longrightarrow> cont f"
|
|
|
778 |
for f :: "'a::chfin \<Rightarrow> 'b::cpo"
|
|
|
779 |
apply (erule contI2)
|
|
|
780 |
apply (frule chfin2finch)
|
|
|
781 |
apply (clarsimp simp add: finite_chain_def)
|
|
|
782 |
apply (subgoal_tac "max_in_chain i (\<lambda>i. f (Y i))")
|
|
|
783 |
apply (simp add: maxinch_is_thelub ch2ch_monofun)
|
|
|
784 |
apply (force simp add: max_in_chain_def)
|
|
|
785 |
done
|
|
|
786 |
|
|
|
787 |
text \<open>All strict functions with flat domain are continuous.\<close>
|
|
|
788 |
|
|
|
789 |
lemma flatdom_strict2mono: "f \<bottom> = \<bottom> \<Longrightarrow> monofun f"
|
|
|
790 |
for f :: "'a::flat \<Rightarrow> 'b::pcpo"
|
|
|
791 |
apply (rule monofunI)
|
|
|
792 |
apply (drule ax_flat)
|
|
|
793 |
apply auto
|
|
|
794 |
done
|
|
|
795 |
|
|
|
796 |
lemma flatdom_strict2cont: "f \<bottom> = \<bottom> \<Longrightarrow> cont f"
|
|
|
797 |
for f :: "'a::flat \<Rightarrow> 'b::pcpo"
|
|
|
798 |
by (rule flatdom_strict2mono [THEN chfindom_monofun2cont])
|
|
|
799 |
|
|
|
800 |
text \<open>All functions with discrete domain are continuous.\<close>
|
|
|
801 |
|
|
|
802 |
lemma cont_discrete_cpo [simp, cont2cont]: "cont f"
|
|
|
803 |
for f :: "'a::discrete_cpo \<Rightarrow> 'b::cpo"
|
|
|
804 |
apply (rule contI)
|
|
|
805 |
apply (drule discrete_chain_const, clarify)
|
|
|
806 |
apply simp
|
|
|
807 |
done
|
|
|
808 |
|
|
|
809 |
section \<open>Admissibility and compactness\<close>
|
|
|
810 |
|
|
|
811 |
default_sort cpo
|
|
|
812 |
|
|
|
813 |
subsection \<open>Definitions\<close>
|
|
|
814 |
|
|
|
815 |
definition adm :: "('a::cpo \<Rightarrow> bool) \<Rightarrow> bool"
|
|
|
816 |
where "adm P \<longleftrightarrow> (\<forall>Y. chain Y \<longrightarrow> (\<forall>i. P (Y i)) \<longrightarrow> P (\<Squnion>i. Y i))"
|
|
|
817 |
|
|
|
818 |
lemma admI: "(\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)) \<Longrightarrow> adm P"
|
|
|
819 |
unfolding adm_def by fast
|
|
|
820 |
|
|
|
821 |
lemma admD: "adm P \<Longrightarrow> chain Y \<Longrightarrow> (\<And>i. P (Y i)) \<Longrightarrow> P (\<Squnion>i. Y i)"
|
|
|
822 |
unfolding adm_def by fast
|
|
|
823 |
|
|
|
824 |
lemma admD2: "adm (\<lambda>x. \<not> P x) \<Longrightarrow> chain Y \<Longrightarrow> P (\<Squnion>i. Y i) \<Longrightarrow> \<exists>i. P (Y i)"
|
|
|
825 |
unfolding adm_def by fast
|
|
|
826 |
|
|
|
827 |
lemma triv_admI: "\<forall>x. P x \<Longrightarrow> adm P"
|
|
|
828 |
by (rule admI) (erule spec)
|
|
|
829 |
|
|
|
830 |
|
|
|
831 |
subsection \<open>Admissibility on chain-finite types\<close>
|
|
|
832 |
|
|
|
833 |
text \<open>For chain-finite (easy) types every formula is admissible.\<close>
|
|
|
834 |
|
|
|
835 |
lemma adm_chfin [simp]: "adm P"
|
|
|
836 |
for P :: "'a::chfin \<Rightarrow> bool"
|
|
|
837 |
by (rule admI, frule chfin, auto simp add: maxinch_is_thelub)
|
|
|
838 |
|
|
|
839 |
|
|
|
840 |
subsection \<open>Admissibility of special formulae and propagation\<close>
|
|
|
841 |
|
|
|
842 |
lemma adm_const [simp]: "adm (\<lambda>x. t)"
|
|
|
843 |
by (rule admI, simp)
|
|
|
844 |
|
|
|
845 |
lemma adm_conj [simp]: "adm (\<lambda>x. P x) \<Longrightarrow> adm (\<lambda>x. Q x) \<Longrightarrow> adm (\<lambda>x. P x \<and> Q x)"
|
|
|
846 |
by (fast intro: admI elim: admD)
|
|
|
847 |
|
|
|
848 |
lemma adm_all [simp]: "(\<And>y. adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y. P x y)"
|
|
|
849 |
by (fast intro: admI elim: admD)
|
|
|
850 |
|
|
|
851 |
lemma adm_ball [simp]: "(\<And>y. y \<in> A \<Longrightarrow> adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y\<in>A. P x y)"
|
|
|
852 |
by (fast intro: admI elim: admD)
|
|
|
853 |
|
|
|
854 |
text \<open>Admissibility for disjunction is hard to prove. It requires 2 lemmas.\<close>
|
|
|
855 |
|
|
|
856 |
lemma adm_disj_lemma1:
|
|
|
857 |
assumes adm: "adm P"
|
|
|
858 |
assumes chain: "chain Y"
|
|
|
859 |
assumes P: "\<forall>i. \<exists>j\<ge>i. P (Y j)"
|
|
|
860 |
shows "P (\<Squnion>i. Y i)"
|
|
|
861 |
proof -
|
|
|
862 |
define f where "f i = (LEAST j. i \<le> j \<and> P (Y j))" for i
|
|
|
863 |
have chain': "chain (\<lambda>i. Y (f i))"
|
|
|
864 |
unfolding f_def
|
|
|
865 |
apply (rule chainI)
|
|
|
866 |
apply (rule chain_mono [OF chain])
|
|
|
867 |
apply (rule Least_le)
|
|
|
868 |
apply (rule LeastI2_ex)
|
|
|
869 |
apply (simp_all add: P)
|
|
|
870 |
done
|
|
|
871 |
have f1: "\<And>i. i \<le> f i" and f2: "\<And>i. P (Y (f i))"
|
|
|
872 |
using LeastI_ex [OF P [rule_format]] by (simp_all add: f_def)
|
|
|
873 |
have lub_eq: "(\<Squnion>i. Y i) = (\<Squnion>i. Y (f i))"
|
|
|
874 |
apply (rule below_antisym)
|
|
|
875 |
apply (rule lub_mono [OF chain chain'])
|
|
|
876 |
apply (rule chain_mono [OF chain f1])
|
|
|
877 |
apply (rule lub_range_mono [OF _ chain chain'])
|
|
|
878 |
apply clarsimp
|
|
|
879 |
done
|
|
|
880 |
show "P (\<Squnion>i. Y i)"
|
|
|
881 |
unfolding lub_eq using adm chain' f2 by (rule admD)
|
|
|
882 |
qed
|
|
|
883 |
|
|
|
884 |
lemma adm_disj_lemma2: "\<forall>n::nat. P n \<or> Q n \<Longrightarrow> (\<forall>i. \<exists>j\<ge>i. P j) \<or> (\<forall>i. \<exists>j\<ge>i. Q j)"
|
|
|
885 |
apply (erule contrapos_pp)
|
|
|
886 |
apply (clarsimp, rename_tac a b)
|
|
|
887 |
apply (rule_tac x="max a b" in exI)
|
|
|
888 |
apply simp
|
|
|
889 |
done
|
|
|
890 |
|
|
|
891 |
lemma adm_disj [simp]: "adm (\<lambda>x. P x) \<Longrightarrow> adm (\<lambda>x. Q x) \<Longrightarrow> adm (\<lambda>x. P x \<or> Q x)"
|
|
|
892 |
apply (rule admI)
|
|
|
893 |
apply (erule adm_disj_lemma2 [THEN disjE])
|
|
|
894 |
apply (erule (2) adm_disj_lemma1 [THEN disjI1])
|
|
|
895 |
apply (erule (2) adm_disj_lemma1 [THEN disjI2])
|
|
|
896 |
done
|
|
|
897 |
|
|
|
898 |
lemma adm_imp [simp]: "adm (\<lambda>x. \<not> P x) \<Longrightarrow> adm (\<lambda>x. Q x) \<Longrightarrow> adm (\<lambda>x. P x \<longrightarrow> Q x)"
|
|
|
899 |
by (subst imp_conv_disj) (rule adm_disj)
|
|
|
900 |
|
|
|
901 |
lemma adm_iff [simp]: "adm (\<lambda>x. P x \<longrightarrow> Q x) \<Longrightarrow> adm (\<lambda>x. Q x \<longrightarrow> P x) \<Longrightarrow> adm (\<lambda>x. P x \<longleftrightarrow> Q x)"
|
|
|
902 |
by (subst iff_conv_conj_imp) (rule adm_conj)
|
|
|
903 |
|
|
|
904 |
text \<open>admissibility and continuity\<close>
|
|
|
905 |
|
|
|
906 |
lemma adm_below [simp]: "cont (\<lambda>x. u x) \<Longrightarrow> cont (\<lambda>x. v x) \<Longrightarrow> adm (\<lambda>x. u x \<sqsubseteq> v x)"
|
|
|
907 |
by (simp add: adm_def cont2contlubE lub_mono ch2ch_cont)
|
|
|
908 |
|
|
|
909 |
lemma adm_eq [simp]: "cont (\<lambda>x. u x) \<Longrightarrow> cont (\<lambda>x. v x) \<Longrightarrow> adm (\<lambda>x. u x = v x)"
|
|
|
910 |
by (simp add: po_eq_conv)
|
|
|
911 |
|
|
|
912 |
lemma adm_subst: "cont (\<lambda>x. t x) \<Longrightarrow> adm P \<Longrightarrow> adm (\<lambda>x. P (t x))"
|
|
|
913 |
by (simp add: adm_def cont2contlubE ch2ch_cont)
|
|
|
914 |
|
|
|
915 |
lemma adm_not_below [simp]: "cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. t x \<notsqsubseteq> u)"
|
|
|
916 |
by (rule admI) (simp add: cont2contlubE ch2ch_cont lub_below_iff)
|
|
|
917 |
|
|
|
918 |
|
|
|
919 |
subsection \<open>Compactness\<close>
|
|
|
920 |
|
|
|
921 |
definition compact :: "'a::cpo \<Rightarrow> bool"
|
|
|
922 |
where "compact k = adm (\<lambda>x. k \<notsqsubseteq> x)"
|
|
|
923 |
|
|
|
924 |
lemma compactI: "adm (\<lambda>x. k \<notsqsubseteq> x) \<Longrightarrow> compact k"
|
|
|
925 |
unfolding compact_def .
|
|
|
926 |
|
|
|
927 |
lemma compactD: "compact k \<Longrightarrow> adm (\<lambda>x. k \<notsqsubseteq> x)"
|
|
|
928 |
unfolding compact_def .
|
|
|
929 |
|
|
|
930 |
lemma compactI2: "(\<And>Y. \<lbrakk>chain Y; x \<sqsubseteq> (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i) \<Longrightarrow> compact x"
|
|
|
931 |
unfolding compact_def adm_def by fast
|
|
|
932 |
|
|
|
933 |
lemma compactD2: "compact x \<Longrightarrow> chain Y \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. Y i) \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i"
|
|
|
934 |
unfolding compact_def adm_def by fast
|
|
|
935 |
|
|
|
936 |
lemma compact_below_lub_iff: "compact x \<Longrightarrow> chain Y \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. Y i) \<longleftrightarrow> (\<exists>i. x \<sqsubseteq> Y i)"
|
|
|
937 |
by (fast intro: compactD2 elim: below_lub)
|
|
|
938 |
|
|
|
939 |
lemma compact_chfin [simp]: "compact x"
|
|
|
940 |
for x :: "'a::chfin"
|
|
|
941 |
by (rule compactI [OF adm_chfin])
|
|
|
942 |
|
|
|
943 |
lemma compact_imp_max_in_chain: "chain Y \<Longrightarrow> compact (\<Squnion>i. Y i) \<Longrightarrow> \<exists>i. max_in_chain i Y"
|
|
|
944 |
apply (drule (1) compactD2, simp)
|
|
|
945 |
apply (erule exE, rule_tac x=i in exI)
|
|
|
946 |
apply (rule max_in_chainI)
|
|
|
947 |
apply (rule below_antisym)
|
|
|
948 |
apply (erule (1) chain_mono)
|
|
|
949 |
apply (erule (1) below_trans [OF is_ub_thelub])
|
|
|
950 |
done
|
|
|
951 |
|
|
|
952 |
text \<open>admissibility and compactness\<close>
|
|
|
953 |
|
|
|
954 |
lemma adm_compact_not_below [simp]:
|
|
|
955 |
"compact k \<Longrightarrow> cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. k \<notsqsubseteq> t x)"
|
|
|
956 |
unfolding compact_def by (rule adm_subst)
|
|
|
957 |
|
|
|
958 |
lemma adm_neq_compact [simp]: "compact k \<Longrightarrow> cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. t x \<noteq> k)"
|
|
|
959 |
by (simp add: po_eq_conv)
|
|
|
960 |
|
|
|
961 |
lemma adm_compact_neq [simp]: "compact k \<Longrightarrow> cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. k \<noteq> t x)"
|
|
|
962 |
by (simp add: po_eq_conv)
|
|
|
963 |
|
|
|
964 |
lemma compact_bottom [simp, intro]: "compact \<bottom>"
|
|
|
965 |
by (rule compactI) simp
|
|
|
966 |
|
|
|
967 |
text \<open>Any upward-closed predicate is admissible.\<close>
|
|
|
968 |
|
|
|
969 |
lemma adm_upward:
|
|
|
970 |
assumes P: "\<And>x y. \<lbrakk>P x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> P y"
|
|
|
971 |
shows "adm P"
|
|
|
972 |
by (rule admI, drule spec, erule P, erule is_ub_thelub)
|
|
|
973 |
|
|
|
974 |
lemmas adm_lemmas =
|
|
|
975 |
adm_const adm_conj adm_all adm_ball adm_disj adm_imp adm_iff
|
|
|
976 |
adm_below adm_eq adm_not_below
|
|
|
977 |
adm_compact_not_below adm_compact_neq adm_neq_compact
|
|
|
978 |
|
|
|
979 |
section \<open>Class instances for the full function space\<close>
|
|
|
980 |
|
|
|
981 |
subsection \<open>Full function space is a partial order\<close>
|
|
|
982 |
|
|
|
983 |
instantiation "fun" :: (type, below) below
|
|
|
984 |
begin
|
|
|
985 |
|
|
|
986 |
definition below_fun_def: "(\<sqsubseteq>) \<equiv> (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x)"
|
|
|
987 |
|
|
|
988 |
instance ..
|
|
|
989 |
end
|
|
|
990 |
|
|
|
991 |
instance "fun" :: (type, po) po
|
|
|
992 |
proof
|
|
|
993 |
fix f :: "'a \<Rightarrow> 'b"
|
|
|
994 |
show "f \<sqsubseteq> f"
|
|
|
995 |
by (simp add: below_fun_def)
|
|
|
996 |
next
|
|
|
997 |
fix f g :: "'a \<Rightarrow> 'b"
|
|
|
998 |
assume "f \<sqsubseteq> g" and "g \<sqsubseteq> f" then show "f = g"
|
|
|
999 |
by (simp add: below_fun_def fun_eq_iff below_antisym)
|
|
|
1000 |
next
|
|
|
1001 |
fix f g h :: "'a \<Rightarrow> 'b"
|
|
|
1002 |
assume "f \<sqsubseteq> g" and "g \<sqsubseteq> h" then show "f \<sqsubseteq> h"
|
|
|
1003 |
unfolding below_fun_def by (fast elim: below_trans)
|
|
|
1004 |
qed
|
|
|
1005 |
|
|
|
1006 |
lemma fun_below_iff: "f \<sqsubseteq> g \<longleftrightarrow> (\<forall>x. f x \<sqsubseteq> g x)"
|
|
|
1007 |
by (simp add: below_fun_def)
|
|
|
1008 |
|
|
|
1009 |
lemma fun_belowI: "(\<And>x. f x \<sqsubseteq> g x) \<Longrightarrow> f \<sqsubseteq> g"
|
|
|
1010 |
by (simp add: below_fun_def)
|
|
|
1011 |
|
|
|
1012 |
lemma fun_belowD: "f \<sqsubseteq> g \<Longrightarrow> f x \<sqsubseteq> g x"
|
|
|
1013 |
by (simp add: below_fun_def)
|
|
|
1014 |
|
|
|
1015 |
|
|
|
1016 |
subsection \<open>Full function space is chain complete\<close>
|
|
|
1017 |
|
|
|
1018 |
text \<open>Properties of chains of functions.\<close>
|
|
|
1019 |
|
|
|
1020 |
lemma fun_chain_iff: "chain S \<longleftrightarrow> (\<forall>x. chain (\<lambda>i. S i x))"
|
|
|
1021 |
by (auto simp: chain_def fun_below_iff)
|
|
|
1022 |
|
|
|
1023 |
lemma ch2ch_fun: "chain S \<Longrightarrow> chain (\<lambda>i. S i x)"
|
|
|
1024 |
by (simp add: chain_def below_fun_def)
|
|
|
1025 |
|
|
|
1026 |
lemma ch2ch_lambda: "(\<And>x. chain (\<lambda>i. S i x)) \<Longrightarrow> chain S"
|
|
|
1027 |
by (simp add: chain_def below_fun_def)
|
|
|
1028 |
|
|
|
1029 |
text \<open>Type \<^typ>\<open>'a::type \<Rightarrow> 'b::cpo\<close> is chain complete\<close>
|
|
|
1030 |
|
|
|
1031 |
lemma is_lub_lambda: "(\<And>x. range (\<lambda>i. Y i x) <<| f x) \<Longrightarrow> range Y <<| f"
|
|
|
1032 |
by (simp add: is_lub_def is_ub_def below_fun_def)
|
|
|
1033 |
|
|
|
1034 |
lemma is_lub_fun: "chain S \<Longrightarrow> range S <<| (\<lambda>x. \<Squnion>i. S i x)"
|
|
|
1035 |
for S :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo"
|
|
|
1036 |
apply (rule is_lub_lambda)
|
|
|
1037 |
apply (rule cpo_lubI)
|
|
|
1038 |
apply (erule ch2ch_fun)
|
|
|
1039 |
done
|
|
|
1040 |
|
|
|
1041 |
lemma lub_fun: "chain S \<Longrightarrow> (\<Squnion>i. S i) = (\<lambda>x. \<Squnion>i. S i x)"
|
|
|
1042 |
for S :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo"
|
|
|
1043 |
by (rule is_lub_fun [THEN lub_eqI])
|
|
|
1044 |
|
|
|
1045 |
instance "fun" :: (type, cpo) cpo
|
|
|
1046 |
by intro_classes (rule exI, erule is_lub_fun)
|
|
|
1047 |
|
|
|
1048 |
instance "fun" :: (type, discrete_cpo) discrete_cpo
|
|
|
1049 |
proof
|
|
|
1050 |
fix f g :: "'a \<Rightarrow> 'b"
|
|
|
1051 |
show "f \<sqsubseteq> g \<longleftrightarrow> f = g"
|
|
|
1052 |
by (simp add: fun_below_iff fun_eq_iff)
|
|
|
1053 |
qed
|
|
|
1054 |
|
|
|
1055 |
|
|
|
1056 |
subsection \<open>Full function space is pointed\<close>
|
|
|
1057 |
|
|
|
1058 |
lemma minimal_fun: "(\<lambda>x. \<bottom>) \<sqsubseteq> f"
|
|
|
1059 |
by (simp add: below_fun_def)
|
|
|
1060 |
|
|
|
1061 |
instance "fun" :: (type, pcpo) pcpo
|
|
|
1062 |
by standard (fast intro: minimal_fun)
|
|
|
1063 |
|
|
|
1064 |
lemma inst_fun_pcpo: "\<bottom> = (\<lambda>x. \<bottom>)"
|
|
|
1065 |
by (rule minimal_fun [THEN bottomI, symmetric])
|
|
|
1066 |
|
|
|
1067 |
lemma app_strict [simp]: "\<bottom> x = \<bottom>"
|
|
|
1068 |
by (simp add: inst_fun_pcpo)
|
|
|
1069 |
|
|
|
1070 |
lemma lambda_strict: "(\<lambda>x. \<bottom>) = \<bottom>"
|
|
|
1071 |
by (rule bottomI, rule minimal_fun)
|
|
|
1072 |
|
|
|
1073 |
|
|
|
1074 |
subsection \<open>Propagation of monotonicity and continuity\<close>
|
|
|
1075 |
|
|
|
1076 |
text \<open>The lub of a chain of monotone functions is monotone.\<close>
|
|
|
1077 |
|
|
|
1078 |
lemma adm_monofun: "adm monofun"
|
|
|
1079 |
by (rule admI) (simp add: lub_fun fun_chain_iff monofun_def lub_mono)
|
|
|
1080 |
|
|
|
1081 |
text \<open>The lub of a chain of continuous functions is continuous.\<close>
|
|
|
1082 |
|
|
|
1083 |
lemma adm_cont: "adm cont"
|
|
|
1084 |
by (rule admI) (simp add: lub_fun fun_chain_iff)
|
|
|
1085 |
|
|
|
1086 |
text \<open>Function application preserves monotonicity and continuity.\<close>
|
|
|
1087 |
|
|
|
1088 |
lemma mono2mono_fun: "monofun f \<Longrightarrow> monofun (\<lambda>x. f x y)"
|
|
|
1089 |
by (simp add: monofun_def fun_below_iff)
|
|
|
1090 |
|
|
|
1091 |
lemma cont2cont_fun: "cont f \<Longrightarrow> cont (\<lambda>x. f x y)"
|
|
|
1092 |
apply (rule contI2)
|
|
|
1093 |
apply (erule cont2mono [THEN mono2mono_fun])
|
|
|
1094 |
apply (simp add: cont2contlubE lub_fun ch2ch_cont)
|
|
|
1095 |
done
|
|
|
1096 |
|
|
|
1097 |
lemma cont_fun: "cont (\<lambda>f. f x)"
|
|
|
1098 |
using cont_id by (rule cont2cont_fun)
|
|
|
1099 |
|
|
|
1100 |
text \<open>
|
|
|
1101 |
Lambda abstraction preserves monotonicity and continuity.
|
|
|
1102 |
(Note \<open>(\<lambda>x. \<lambda>y. f x y) = f\<close>.)
|
|
|
1103 |
\<close>
|
|
|
1104 |
|
|
|
1105 |
lemma mono2mono_lambda: "(\<And>y. monofun (\<lambda>x. f x y)) \<Longrightarrow> monofun f"
|
|
|
1106 |
by (simp add: monofun_def fun_below_iff)
|
|
|
1107 |
|
|
|
1108 |
lemma cont2cont_lambda [simp]:
|
|
|
1109 |
assumes f: "\<And>y. cont (\<lambda>x. f x y)"
|
|
|
1110 |
shows "cont f"
|
|
|
1111 |
by (rule contI, rule is_lub_lambda, rule contE [OF f])
|
|
|
1112 |
|
|
|
1113 |
text \<open>What D.A.Schmidt calls continuity of abstraction; never used here\<close>
|
|
|
1114 |
|
|
|
1115 |
lemma contlub_lambda: "(\<And>x. chain (\<lambda>i. S i x)) \<Longrightarrow> (\<lambda>x. \<Squnion>i. S i x) = (\<Squnion>i. (\<lambda>x. S i x))"
|
|
|
1116 |
for S :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo"
|
|
|
1117 |
by (simp add: lub_fun ch2ch_lambda)
|
|
|
1118 |
|
|
|
1119 |
section \<open>The cpo of cartesian products\<close>
|
|
|
1120 |
|
|
|
1121 |
default_sort cpo
|
|
|
1122 |
|
|
|
1123 |
|
|
|
1124 |
subsection \<open>Unit type is a pcpo\<close>
|
|
|
1125 |
|
|
|
1126 |
instantiation unit :: discrete_cpo
|
|
|
1127 |
begin
|
|
|
1128 |
|
|
|
1129 |
definition below_unit_def [simp]: "x \<sqsubseteq> (y::unit) \<longleftrightarrow> True"
|
|
|
1130 |
|
|
|
1131 |
instance
|
|
|
1132 |
by standard simp
|
|
|
1133 |
|
|
|
1134 |
end
|
|
|
1135 |
|
|
|
1136 |
instance unit :: pcpo
|
|
|
1137 |
by standard simp
|
|
|
1138 |
|
|
|
1139 |
|
|
|
1140 |
subsection \<open>Product type is a partial order\<close>
|
|
|
1141 |
|
|
|
1142 |
instantiation prod :: (below, below) below
|
|
|
1143 |
begin
|
|
|
1144 |
|
|
|
1145 |
definition below_prod_def: "(\<sqsubseteq>) \<equiv> \<lambda>p1 p2. (fst p1 \<sqsubseteq> fst p2 \<and> snd p1 \<sqsubseteq> snd p2)"
|
|
|
1146 |
|
|
|
1147 |
instance ..
|
|
|
1148 |
|
|
|
1149 |
end
|
|
|
1150 |
|
|
|
1151 |
instance prod :: (po, po) po
|
|
|
1152 |
proof
|
|
|
1153 |
fix x :: "'a \<times> 'b"
|
|
|
1154 |
show "x \<sqsubseteq> x"
|
|
|
1155 |
by (simp add: below_prod_def)
|
|
|
1156 |
next
|
|
|
1157 |
fix x y :: "'a \<times> 'b"
|
|
|
1158 |
assume "x \<sqsubseteq> y" "y \<sqsubseteq> x"
|
|
|
1159 |
then show "x = y"
|
|
|
1160 |
unfolding below_prod_def prod_eq_iff
|
|
|
1161 |
by (fast intro: below_antisym)
|
|
|
1162 |
next
|
|
|
1163 |
fix x y z :: "'a \<times> 'b"
|
|
|
1164 |
assume "x \<sqsubseteq> y" "y \<sqsubseteq> z"
|
|
|
1165 |
then show "x \<sqsubseteq> z"
|
|
|
1166 |
unfolding below_prod_def
|
|
|
1167 |
by (fast intro: below_trans)
|
|
|
1168 |
qed
|
|
|
1169 |
|
|
|
1170 |
|
|
|
1171 |
subsection \<open>Monotonicity of \emph{Pair}, \emph{fst}, \emph{snd}\<close>
|
|
|
1172 |
|
|
|
1173 |
lemma prod_belowI: "fst p \<sqsubseteq> fst q \<Longrightarrow> snd p \<sqsubseteq> snd q \<Longrightarrow> p \<sqsubseteq> q"
|
|
|
1174 |
by (simp add: below_prod_def)
|
|
|
1175 |
|
|
|
1176 |
lemma Pair_below_iff [simp]: "(a, b) \<sqsubseteq> (c, d) \<longleftrightarrow> a \<sqsubseteq> c \<and> b \<sqsubseteq> d"
|
|
|
1177 |
by (simp add: below_prod_def)
|
|
|
1178 |
|
|
|
1179 |
text \<open>Pair \<open>(_,_)\<close> is monotone in both arguments\<close>
|
|
|
1180 |
|
|
|
1181 |
lemma monofun_pair1: "monofun (\<lambda>x. (x, y))"
|
|
|
1182 |
by (simp add: monofun_def)
|
|
|
1183 |
|
|
|
1184 |
lemma monofun_pair2: "monofun (\<lambda>y. (x, y))"
|
|
|
1185 |
by (simp add: monofun_def)
|
|
|
1186 |
|
|
|
1187 |
lemma monofun_pair: "x1 \<sqsubseteq> x2 \<Longrightarrow> y1 \<sqsubseteq> y2 \<Longrightarrow> (x1, y1) \<sqsubseteq> (x2, y2)"
|
|
|
1188 |
by simp
|
|
|
1189 |
|
|
|
1190 |
lemma ch2ch_Pair [simp]: "chain X \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. (X i, Y i))"
|
|
|
1191 |
by (rule chainI, simp add: chainE)
|
|
|
1192 |
|
|
|
1193 |
text \<open>\<^term>\<open>fst\<close> and \<^term>\<open>snd\<close> are monotone\<close>
|
|
|
1194 |
|
|
|
1195 |
lemma fst_monofun: "x \<sqsubseteq> y \<Longrightarrow> fst x \<sqsubseteq> fst y"
|
|
|
1196 |
by (simp add: below_prod_def)
|
|
|
1197 |
|
|
|
1198 |
lemma snd_monofun: "x \<sqsubseteq> y \<Longrightarrow> snd x \<sqsubseteq> snd y"
|
|
|
1199 |
by (simp add: below_prod_def)
|
|
|
1200 |
|
|
|
1201 |
lemma monofun_fst: "monofun fst"
|
|
|
1202 |
by (simp add: monofun_def below_prod_def)
|
|
|
1203 |
|
|
|
1204 |
lemma monofun_snd: "monofun snd"
|
|
|
1205 |
by (simp add: monofun_def below_prod_def)
|
|
|
1206 |
|
|
|
1207 |
lemmas ch2ch_fst [simp] = ch2ch_monofun [OF monofun_fst]
|
|
|
1208 |
|
|
|
1209 |
lemmas ch2ch_snd [simp] = ch2ch_monofun [OF monofun_snd]
|
|
|
1210 |
|
|
|
1211 |
lemma prod_chain_cases:
|
|
|
1212 |
assumes chain: "chain Y"
|
|
|
1213 |
obtains A B
|
|
|
1214 |
where "chain A" and "chain B" and "Y = (\<lambda>i. (A i, B i))"
|
|
|
1215 |
proof
|
|
|
1216 |
from chain show "chain (\<lambda>i. fst (Y i))"
|
|
|
1217 |
by (rule ch2ch_fst)
|
|
|
1218 |
from chain show "chain (\<lambda>i. snd (Y i))"
|
|
|
1219 |
by (rule ch2ch_snd)
|
|
|
1220 |
show "Y = (\<lambda>i. (fst (Y i), snd (Y i)))"
|
|
|
1221 |
by simp
|
|
|
1222 |
qed
|
|
|
1223 |
|
|
|
1224 |
|
|
|
1225 |
subsection \<open>Product type is a cpo\<close>
|
|
|
1226 |
|
|
|
1227 |
lemma is_lub_Pair: "range A <<| x \<Longrightarrow> range B <<| y \<Longrightarrow> range (\<lambda>i. (A i, B i)) <<| (x, y)"
|
|
|
1228 |
by (simp add: is_lub_def is_ub_def below_prod_def)
|
|
|
1229 |
|
|
|
1230 |
lemma lub_Pair: "chain A \<Longrightarrow> chain B \<Longrightarrow> (\<Squnion>i. (A i, B i)) = (\<Squnion>i. A i, \<Squnion>i. B i)"
|
|
|
1231 |
for A :: "nat \<Rightarrow> 'a::cpo" and B :: "nat \<Rightarrow> 'b::cpo"
|
|
|
1232 |
by (fast intro: lub_eqI is_lub_Pair elim: thelubE)
|
|
|
1233 |
|
|
|
1234 |
lemma is_lub_prod:
|
|
|
1235 |
fixes S :: "nat \<Rightarrow> ('a::cpo \<times> 'b::cpo)"
|
|
|
1236 |
assumes "chain S"
|
|
|
1237 |
shows "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
|
|
|
1238 |
using assms by (auto elim: prod_chain_cases simp: is_lub_Pair cpo_lubI)
|
|
|
1239 |
|
|
|
1240 |
lemma lub_prod: "chain S \<Longrightarrow> (\<Squnion>i. S i) = (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
|
|
|
1241 |
for S :: "nat \<Rightarrow> 'a::cpo \<times> 'b::cpo"
|
|
|
1242 |
by (rule is_lub_prod [THEN lub_eqI])
|
|
|
1243 |
|
|
|
1244 |
instance prod :: (cpo, cpo) cpo
|
|
|
1245 |
proof
|
|
|
1246 |
fix S :: "nat \<Rightarrow> ('a \<times> 'b)"
|
|
|
1247 |
assume "chain S"
|
|
|
1248 |
then have "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
|
|
|
1249 |
by (rule is_lub_prod)
|
|
|
1250 |
then show "\<exists>x. range S <<| x" ..
|
|
|
1251 |
qed
|
|
|
1252 |
|
|
|
1253 |
instance prod :: (discrete_cpo, discrete_cpo) discrete_cpo
|
|
|
1254 |
proof
|
|
|
1255 |
fix x y :: "'a \<times> 'b"
|
|
|
1256 |
show "x \<sqsubseteq> y \<longleftrightarrow> x = y"
|
|
|
1257 |
by (simp add: below_prod_def prod_eq_iff)
|
|
|
1258 |
qed
|
|
|
1259 |
|
|
|
1260 |
|
|
|
1261 |
subsection \<open>Product type is pointed\<close>
|
|
|
1262 |
|
|
|
1263 |
lemma minimal_prod: "(\<bottom>, \<bottom>) \<sqsubseteq> p"
|
|
|
1264 |
by (simp add: below_prod_def)
|
|
|
1265 |
|
|
|
1266 |
instance prod :: (pcpo, pcpo) pcpo
|
|
|
1267 |
by intro_classes (fast intro: minimal_prod)
|
|
|
1268 |
|
|
|
1269 |
lemma inst_prod_pcpo: "\<bottom> = (\<bottom>, \<bottom>)"
|
|
|
1270 |
by (rule minimal_prod [THEN bottomI, symmetric])
|
|
|
1271 |
|
|
|
1272 |
lemma Pair_bottom_iff [simp]: "(x, y) = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>"
|
|
|
1273 |
by (simp add: inst_prod_pcpo)
|
|
|
1274 |
|
|
|
1275 |
lemma fst_strict [simp]: "fst \<bottom> = \<bottom>"
|
|
|
1276 |
unfolding inst_prod_pcpo by (rule fst_conv)
|
|
|
1277 |
|
|
|
1278 |
lemma snd_strict [simp]: "snd \<bottom> = \<bottom>"
|
|
|
1279 |
unfolding inst_prod_pcpo by (rule snd_conv)
|
|
|
1280 |
|
|
|
1281 |
lemma Pair_strict [simp]: "(\<bottom>, \<bottom>) = \<bottom>"
|
|
|
1282 |
by simp
|
|
|
1283 |
|
|
|
1284 |
lemma split_strict [simp]: "case_prod f \<bottom> = f \<bottom> \<bottom>"
|
|
|
1285 |
by (simp add: split_def)
|
|
|
1286 |
|
|
|
1287 |
|
|
|
1288 |
subsection \<open>Continuity of \emph{Pair}, \emph{fst}, \emph{snd}\<close>
|
|
|
1289 |
|
|
|
1290 |
lemma cont_pair1: "cont (\<lambda>x. (x, y))"
|
|
|
1291 |
apply (rule contI)
|
|
|
1292 |
apply (rule is_lub_Pair)
|
|
|
1293 |
apply (erule cpo_lubI)
|
|
|
1294 |
apply (rule is_lub_const)
|
|
|
1295 |
done
|
|
|
1296 |
|
|
|
1297 |
lemma cont_pair2: "cont (\<lambda>y. (x, y))"
|
|
|
1298 |
apply (rule contI)
|
|
|
1299 |
apply (rule is_lub_Pair)
|
|
|
1300 |
apply (rule is_lub_const)
|
|
|
1301 |
apply (erule cpo_lubI)
|
|
|
1302 |
done
|
|
|
1303 |
|
|
|
1304 |
lemma cont_fst: "cont fst"
|
|
|
1305 |
apply (rule contI)
|
|
|
1306 |
apply (simp add: lub_prod)
|
|
|
1307 |
apply (erule cpo_lubI [OF ch2ch_fst])
|
|
|
1308 |
done
|
|
|
1309 |
|
|
|
1310 |
lemma cont_snd: "cont snd"
|
|
|
1311 |
apply (rule contI)
|
|
|
1312 |
apply (simp add: lub_prod)
|
|
|
1313 |
apply (erule cpo_lubI [OF ch2ch_snd])
|
|
|
1314 |
done
|
|
|
1315 |
|
|
|
1316 |
lemma cont2cont_Pair [simp, cont2cont]:
|
|
|
1317 |
assumes f: "cont (\<lambda>x. f x)"
|
|
|
1318 |
assumes g: "cont (\<lambda>x. g x)"
|
|
|
1319 |
shows "cont (\<lambda>x. (f x, g x))"
|
|
|
1320 |
apply (rule cont_apply [OF f cont_pair1])
|
|
|
1321 |
apply (rule cont_apply [OF g cont_pair2])
|
|
|
1322 |
apply (rule cont_const)
|
|
|
1323 |
done
|
|
|
1324 |
|
|
|
1325 |
lemmas cont2cont_fst [simp, cont2cont] = cont_compose [OF cont_fst]
|
|
|
1326 |
|
|
|
1327 |
lemmas cont2cont_snd [simp, cont2cont] = cont_compose [OF cont_snd]
|
|
|
1328 |
|
|
|
1329 |
lemma cont2cont_case_prod:
|
|
|
1330 |
assumes f1: "\<And>a b. cont (\<lambda>x. f x a b)"
|
|
|
1331 |
assumes f2: "\<And>x b. cont (\<lambda>a. f x a b)"
|
|
|
1332 |
assumes f3: "\<And>x a. cont (\<lambda>b. f x a b)"
|
|
|
1333 |
assumes g: "cont (\<lambda>x. g x)"
|
|
|
1334 |
shows "cont (\<lambda>x. case g x of (a, b) \<Rightarrow> f x a b)"
|
|
|
1335 |
unfolding split_def
|
|
|
1336 |
apply (rule cont_apply [OF g])
|
|
|
1337 |
apply (rule cont_apply [OF cont_fst f2])
|
|
|
1338 |
apply (rule cont_apply [OF cont_snd f3])
|
|
|
1339 |
apply (rule cont_const)
|
|
|
1340 |
apply (rule f1)
|
|
|
1341 |
done
|
|
|
1342 |
|
|
|
1343 |
lemma prod_contI:
|
|
|
1344 |
assumes f1: "\<And>y. cont (\<lambda>x. f (x, y))"
|
|
|
1345 |
assumes f2: "\<And>x. cont (\<lambda>y. f (x, y))"
|
|
|
1346 |
shows "cont f"
|
|
|
1347 |
proof -
|
|
|
1348 |
have "cont (\<lambda>(x, y). f (x, y))"
|
|
|
1349 |
by (intro cont2cont_case_prod f1 f2 cont2cont)
|
|
|
1350 |
then show "cont f"
|
|
|
1351 |
by (simp only: case_prod_eta)
|
|
|
1352 |
qed
|
|
|
1353 |
|
|
|
1354 |
lemma prod_cont_iff: "cont f \<longleftrightarrow> (\<forall>y. cont (\<lambda>x. f (x, y))) \<and> (\<forall>x. cont (\<lambda>y. f (x, y)))"
|
|
|
1355 |
apply safe
|
|
|
1356 |
apply (erule cont_compose [OF _ cont_pair1])
|
|
|
1357 |
apply (erule cont_compose [OF _ cont_pair2])
|
|
|
1358 |
apply (simp only: prod_contI)
|
|
|
1359 |
done
|
|
|
1360 |
|
|
|
1361 |
lemma cont2cont_case_prod' [simp, cont2cont]:
|
|
|
1362 |
assumes f: "cont (\<lambda>p. f (fst p) (fst (snd p)) (snd (snd p)))"
|
|
|
1363 |
assumes g: "cont (\<lambda>x. g x)"
|
|
|
1364 |
shows "cont (\<lambda>x. case_prod (f x) (g x))"
|
|
|
1365 |
using assms by (simp add: cont2cont_case_prod prod_cont_iff)
|
|
|
1366 |
|
|
|
1367 |
text \<open>The simple version (due to Joachim Breitner) is needed if
|
|
|
1368 |
either element type of the pair is not a cpo.\<close>
|
|
|
1369 |
|
|
|
1370 |
lemma cont2cont_split_simple [simp, cont2cont]:
|
|
|
1371 |
assumes "\<And>a b. cont (\<lambda>x. f x a b)"
|
|
|
1372 |
shows "cont (\<lambda>x. case p of (a, b) \<Rightarrow> f x a b)"
|
|
|
1373 |
using assms by (cases p) auto
|
|
|
1374 |
|
|
|
1375 |
text \<open>Admissibility of predicates on product types.\<close>
|
|
|
1376 |
|
|
|
1377 |
lemma adm_case_prod [simp]:
|
|
|
1378 |
assumes "adm (\<lambda>x. P x (fst (f x)) (snd (f x)))"
|
|
|
1379 |
shows "adm (\<lambda>x. case f x of (a, b) \<Rightarrow> P x a b)"
|
|
|
1380 |
unfolding case_prod_beta using assms .
|
|
|
1381 |
|
|
|
1382 |
|
|
|
1383 |
subsection \<open>Compactness and chain-finiteness\<close>
|
|
|
1384 |
|
|
|
1385 |
lemma fst_below_iff: "fst x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (y, snd x)"
|
|
|
1386 |
for x :: "'a \<times> 'b"
|
|
|
1387 |
by (simp add: below_prod_def)
|
|
|
1388 |
|
|
|
1389 |
lemma snd_below_iff: "snd x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (fst x, y)"
|
|
|
1390 |
for x :: "'a \<times> 'b"
|
|
|
1391 |
by (simp add: below_prod_def)
|
|
|
1392 |
|
|
|
1393 |
lemma compact_fst: "compact x \<Longrightarrow> compact (fst x)"
|
|
|
1394 |
by (rule compactI) (simp add: fst_below_iff)
|
|
|
1395 |
|
|
|
1396 |
lemma compact_snd: "compact x \<Longrightarrow> compact (snd x)"
|
|
|
1397 |
by (rule compactI) (simp add: snd_below_iff)
|
|
|
1398 |
|
|
|
1399 |
lemma compact_Pair: "compact x \<Longrightarrow> compact y \<Longrightarrow> compact (x, y)"
|
|
|
1400 |
by (rule compactI) (simp add: below_prod_def)
|
|
|
1401 |
|
|
|
1402 |
lemma compact_Pair_iff [simp]: "compact (x, y) \<longleftrightarrow> compact x \<and> compact y"
|
|
|
1403 |
apply (safe intro!: compact_Pair)
|
|
|
1404 |
apply (drule compact_fst, simp)
|
|
|
1405 |
apply (drule compact_snd, simp)
|
|
|
1406 |
done
|
|
|
1407 |
|
|
|
1408 |
instance prod :: (chfin, chfin) chfin
|
|
|
1409 |
apply intro_classes
|
|
|
1410 |
apply (erule compact_imp_max_in_chain)
|
|
|
1411 |
apply (case_tac "\<Squnion>i. Y i", simp)
|
|
|
1412 |
done
|
|
|
1413 |
|
|
|
1414 |
section \<open>Discrete cpo types\<close>
|
|
|
1415 |
|
|
|
1416 |
datatype 'a discr = Discr "'a :: type"
|
|
|
1417 |
|
|
|
1418 |
subsection \<open>Discrete cpo class instance\<close>
|
|
|
1419 |
|
|
|
1420 |
instantiation discr :: (type) discrete_cpo
|
|
|
1421 |
begin
|
|
|
1422 |
|
|
|
1423 |
definition "((\<sqsubseteq>) :: 'a discr \<Rightarrow> 'a discr \<Rightarrow> bool) = (=)"
|
|
|
1424 |
|
|
|
1425 |
instance
|
|
|
1426 |
by standard (simp add: below_discr_def)
|
|
|
1427 |
|
|
|
1428 |
end
|
|
|
1429 |
|
|
|
1430 |
|
|
|
1431 |
subsection \<open>\emph{undiscr}\<close>
|
|
|
1432 |
|
|
|
1433 |
definition undiscr :: "('a::type)discr \<Rightarrow> 'a"
|
|
|
1434 |
where "undiscr x = (case x of Discr y \<Rightarrow> y)"
|
|
|
1435 |
|
|
|
1436 |
lemma undiscr_Discr [simp]: "undiscr (Discr x) = x"
|
|
|
1437 |
by (simp add: undiscr_def)
|
|
|
1438 |
|
|
|
1439 |
lemma Discr_undiscr [simp]: "Discr (undiscr y) = y"
|
|
|
1440 |
by (induct y) simp
|
|
|
1441 |
|
|
|
1442 |
end
|