src/HOL/RealVector.thy
changeset 36409 d323e7773aa8
parent 36349 39be26d1bc28
child 36795 e05e1283c550
equal deleted inserted replaced
36350:bc7982c54e37 36409:d323e7773aa8
   205   fixes x :: "'a::real_div_algebra" shows
   205   fixes x :: "'a::real_div_algebra" shows
   206   "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
   206   "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
   207 by (rule inverse_unique, simp)
   207 by (rule inverse_unique, simp)
   208 
   208 
   209 lemma inverse_scaleR_distrib:
   209 lemma inverse_scaleR_distrib:
   210   fixes x :: "'a::{real_div_algebra,division_ring_inverse_zero}"
   210   fixes x :: "'a::{real_div_algebra, division_ring_inverse_zero}"
   211   shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
   211   shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
   212 apply (case_tac "a = 0", simp)
   212 apply (case_tac "a = 0", simp)
   213 apply (case_tac "x = 0", simp)
   213 apply (case_tac "x = 0", simp)
   214 apply (erule (1) nonzero_inverse_scaleR_distrib)
   214 apply (erule (1) nonzero_inverse_scaleR_distrib)
   215 done
   215 done
   248    inverse (of_real x :: 'a::real_div_algebra)"
   248    inverse (of_real x :: 'a::real_div_algebra)"
   249 by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
   249 by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
   250 
   250 
   251 lemma of_real_inverse [simp]:
   251 lemma of_real_inverse [simp]:
   252   "of_real (inverse x) =
   252   "of_real (inverse x) =
   253    inverse (of_real x :: 'a::{real_div_algebra,division_ring_inverse_zero})"
   253    inverse (of_real x :: 'a::{real_div_algebra, division_ring_inverse_zero})"
   254 by (simp add: of_real_def inverse_scaleR_distrib)
   254 by (simp add: of_real_def inverse_scaleR_distrib)
   255 
   255 
   256 lemma nonzero_of_real_divide:
   256 lemma nonzero_of_real_divide:
   257   "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
   257   "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
   258    (of_real x / of_real y :: 'a::real_field)"
   258    (of_real x / of_real y :: 'a::real_field)"
   259 by (simp add: divide_inverse nonzero_of_real_inverse)
   259 by (simp add: divide_inverse nonzero_of_real_inverse)
   260 
   260 
   261 lemma of_real_divide [simp]:
   261 lemma of_real_divide [simp]:
   262   "of_real (x / y) =
   262   "of_real (x / y) =
   263    (of_real x / of_real y :: 'a::{real_field,division_ring_inverse_zero})"
   263    (of_real x / of_real y :: 'a::{real_field, field_inverse_zero})"
   264 by (simp add: divide_inverse)
   264 by (simp add: divide_inverse)
   265 
   265 
   266 lemma of_real_power [simp]:
   266 lemma of_real_power [simp]:
   267   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
   267   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
   268 by (induct n) simp_all
   268 by (induct n) simp_all
   368 apply (rule range_eqI)
   368 apply (rule range_eqI)
   369 apply (erule nonzero_of_real_inverse [symmetric])
   369 apply (erule nonzero_of_real_inverse [symmetric])
   370 done
   370 done
   371 
   371 
   372 lemma Reals_inverse [simp]:
   372 lemma Reals_inverse [simp]:
   373   fixes a :: "'a::{real_div_algebra,division_ring_inverse_zero}"
   373   fixes a :: "'a::{real_div_algebra, division_ring_inverse_zero}"
   374   shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
   374   shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
   375 apply (auto simp add: Reals_def)
   375 apply (auto simp add: Reals_def)
   376 apply (rule range_eqI)
   376 apply (rule range_eqI)
   377 apply (rule of_real_inverse [symmetric])
   377 apply (rule of_real_inverse [symmetric])
   378 done
   378 done
   384 apply (rule range_eqI)
   384 apply (rule range_eqI)
   385 apply (erule nonzero_of_real_divide [symmetric])
   385 apply (erule nonzero_of_real_divide [symmetric])
   386 done
   386 done
   387 
   387 
   388 lemma Reals_divide [simp]:
   388 lemma Reals_divide [simp]:
   389   fixes a b :: "'a::{real_field,division_ring_inverse_zero}"
   389   fixes a b :: "'a::{real_field, field_inverse_zero}"
   390   shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
   390   shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
   391 apply (auto simp add: Reals_def)
   391 apply (auto simp add: Reals_def)
   392 apply (rule range_eqI)
   392 apply (rule range_eqI)
   393 apply (rule of_real_divide [symmetric])
   393 apply (rule of_real_divide [symmetric])
   394 done
   394 done
   724 apply (rule inverse_unique [symmetric])
   724 apply (rule inverse_unique [symmetric])
   725 apply (simp add: norm_mult [symmetric])
   725 apply (simp add: norm_mult [symmetric])
   726 done
   726 done
   727 
   727 
   728 lemma norm_inverse:
   728 lemma norm_inverse:
   729   fixes a :: "'a::{real_normed_div_algebra,division_ring_inverse_zero}"
   729   fixes a :: "'a::{real_normed_div_algebra, division_ring_inverse_zero}"
   730   shows "norm (inverse a) = inverse (norm a)"
   730   shows "norm (inverse a) = inverse (norm a)"
   731 apply (case_tac "a = 0", simp)
   731 apply (case_tac "a = 0", simp)
   732 apply (erule nonzero_norm_inverse)
   732 apply (erule nonzero_norm_inverse)
   733 done
   733 done
   734 
   734 
   736   fixes a b :: "'a::real_normed_field"
   736   fixes a b :: "'a::real_normed_field"
   737   shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
   737   shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
   738 by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
   738 by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
   739 
   739 
   740 lemma norm_divide:
   740 lemma norm_divide:
   741   fixes a b :: "'a::{real_normed_field,division_ring_inverse_zero}"
   741   fixes a b :: "'a::{real_normed_field, field_inverse_zero}"
   742   shows "norm (a / b) = norm a / norm b"
   742   shows "norm (a / b) = norm a / norm b"
   743 by (simp add: divide_inverse norm_mult norm_inverse)
   743 by (simp add: divide_inverse norm_mult norm_inverse)
   744 
   744 
   745 lemma norm_power_ineq:
   745 lemma norm_power_ineq:
   746   fixes x :: "'a::{real_normed_algebra_1}"
   746   fixes x :: "'a::{real_normed_algebra_1}"