src/HOL/Library/Numeral_Type.thy
changeset 30001 dd27e16677b2
parent 29999 da85a244e328
child 30032 c7f0c1b8001b
equal deleted inserted replaced
30000:453077188eac 30001:dd27e16677b2
    40     Syntax.const "_type_card" $ Syntax.term_of_typ show_sorts T;
    40     Syntax.const "_type_card" $ Syntax.term_of_typ show_sorts T;
    41 in [(@{const_syntax card}, card_univ_tr')]
    41 in [(@{const_syntax card}, card_univ_tr')]
    42 end
    42 end
    43 *}
    43 *}
    44 
    44 
    45 lemma card_unit: "CARD(unit) = 1"
    45 lemma card_unit [simp]: "CARD(unit) = 1"
    46   unfolding UNIV_unit by simp
    46   unfolding UNIV_unit by simp
    47 
    47 
    48 lemma card_bool: "CARD(bool) = 2"
    48 lemma card_bool [simp]: "CARD(bool) = 2"
    49   unfolding UNIV_bool by simp
    49   unfolding UNIV_bool by simp
    50 
    50 
    51 lemma card_prod: "CARD('a::finite \<times> 'b::finite) = CARD('a) * CARD('b)"
    51 lemma card_prod [simp]: "CARD('a \<times> 'b) = CARD('a::finite) * CARD('b::finite)"
    52   unfolding UNIV_Times_UNIV [symmetric] by (simp only: card_cartesian_product)
    52   unfolding UNIV_Times_UNIV [symmetric] by (simp only: card_cartesian_product)
    53 
    53 
    54 lemma card_sum: "CARD('a::finite + 'b::finite) = CARD('a) + CARD('b)"
    54 lemma card_sum [simp]: "CARD('a + 'b) = CARD('a::finite) + CARD('b::finite)"
    55   unfolding UNIV_Plus_UNIV [symmetric] by (simp only: finite card_Plus)
    55   unfolding UNIV_Plus_UNIV [symmetric] by (simp only: finite card_Plus)
    56 
    56 
    57 lemma card_option: "CARD('a::finite option) = Suc CARD('a)"
    57 lemma card_option [simp]: "CARD('a option) = Suc CARD('a::finite)"
    58   unfolding insert_None_conv_UNIV [symmetric]
    58   unfolding insert_None_conv_UNIV [symmetric]
    59   apply (subgoal_tac "(None::'a option) \<notin> range Some")
    59   apply (subgoal_tac "(None::'a option) \<notin> range Some")
    60   apply (simp add: card_image)
    60   apply (simp add: card_image)
    61   apply fast
    61   apply fast
    62   done
    62   done
    63 
    63 
    64 lemma card_set: "CARD('a::finite set) = 2 ^ CARD('a)"
    64 lemma card_set [simp]: "CARD('a set) = 2 ^ CARD('a::finite)"
    65   unfolding Pow_UNIV [symmetric]
    65   unfolding Pow_UNIV [symmetric]
    66   by (simp only: card_Pow finite numeral_2_eq_2)
    66   by (simp only: card_Pow finite numeral_2_eq_2)
    67 
    67 
    68 lemma card_finite_pos [simp]: "0 < CARD('a::finite)"
    68 lemma card_nat [simp]: "CARD(nat) = 0"
       
    69   by (simp add: infinite_UNIV_nat card_eq_0_iff)
       
    70 
       
    71 
       
    72 subsection {* Classes with at least 1 and 2  *}
       
    73 
       
    74 text {* Class finite already captures "at least 1" *}
       
    75 
       
    76 lemma zero_less_card_finite [simp]: "0 < CARD('a::finite)"
    69   unfolding neq0_conv [symmetric] by simp
    77   unfolding neq0_conv [symmetric] by simp
       
    78 
       
    79 lemma one_le_card_finite [simp]: "Suc 0 \<le> CARD('a::finite)"
       
    80   by (simp add: less_Suc_eq_le [symmetric])
       
    81 
       
    82 text {* Class for cardinality "at least 2" *}
       
    83 
       
    84 class card2 = finite + 
       
    85   assumes two_le_card: "2 \<le> CARD('a)"
       
    86 
       
    87 lemma one_less_card: "Suc 0 < CARD('a::card2)"
       
    88   using two_le_card [where 'a='a] by simp
       
    89 
       
    90 lemma one_less_int_card: "1 < int CARD('a::card2)"
       
    91   using one_less_card [where 'a='a] by simp
    70 
    92 
    71 
    93 
    72 subsection {* Numeral Types *}
    94 subsection {* Numeral Types *}
    73 
    95 
    74 typedef (open) num0 = "UNIV :: nat set" ..
    96 typedef (open) num0 = "UNIV :: nat set" ..
    83 typedef (open) 'a bit1 = "{0 ..< 1 + 2 * int CARD('a::finite)}"
   105 typedef (open) 'a bit1 = "{0 ..< 1 + 2 * int CARD('a::finite)}"
    84 proof
   106 proof
    85   show "0 \<in> {0 ..< 1 + 2 * int CARD('a)}"
   107   show "0 \<in> {0 ..< 1 + 2 * int CARD('a)}"
    86     by simp
   108     by simp
    87 qed
   109 qed
       
   110 
       
   111 lemma card_num0 [simp]: "CARD (num0) = 0"
       
   112   unfolding type_definition.card [OF type_definition_num0]
       
   113   by simp
       
   114 
       
   115 lemma card_num1 [simp]: "CARD(num1) = 1"
       
   116   unfolding type_definition.card [OF type_definition_num1]
       
   117   by (simp only: card_unit)
       
   118 
       
   119 lemma card_bit0 [simp]: "CARD('a bit0) = 2 * CARD('a::finite)"
       
   120   unfolding type_definition.card [OF type_definition_bit0]
       
   121   by simp
       
   122 
       
   123 lemma card_bit1 [simp]: "CARD('a bit1) = Suc (2 * CARD('a::finite))"
       
   124   unfolding type_definition.card [OF type_definition_bit1]
       
   125   by simp
    88 
   126 
    89 instance num1 :: finite
   127 instance num1 :: finite
    90 proof
   128 proof
    91   show "finite (UNIV::num1 set)"
   129   show "finite (UNIV::num1 set)"
    92     unfolding type_definition.univ [OF type_definition_num1]
   130     unfolding type_definition.univ [OF type_definition_num1]
    93     using finite by (rule finite_imageI)
   131     using finite by (rule finite_imageI)
    94 qed
   132 qed
    95 
   133 
    96 instance bit0 :: (finite) finite
   134 instance bit0 :: (finite) card2
    97 proof
   135 proof
    98   show "finite (UNIV::'a bit0 set)"
   136   show "finite (UNIV::'a bit0 set)"
    99     unfolding type_definition.univ [OF type_definition_bit0]
   137     unfolding type_definition.univ [OF type_definition_bit0]
   100     by simp
   138     by simp
   101 qed
   139   show "2 \<le> CARD('a bit0)"
   102 
   140     by simp
   103 instance bit1 :: (finite) finite
   141 qed
       
   142 
       
   143 instance bit1 :: (finite) card2
   104 proof
   144 proof
   105   show "finite (UNIV::'a bit1 set)"
   145   show "finite (UNIV::'a bit1 set)"
   106     unfolding type_definition.univ [OF type_definition_bit1]
   146     unfolding type_definition.univ [OF type_definition_bit1]
   107     by simp
   147     by simp
   108 qed
   148   show "2 \<le> CARD('a bit1)"
   109 
   149     by simp
   110 lemma card_num1: "CARD(num1) = 1"
   150 qed
   111   unfolding type_definition.card [OF type_definition_num1]
       
   112   by (simp only: card_unit)
       
   113 
       
   114 lemma card_bit0: "CARD('a::finite bit0) = 2 * CARD('a)"
       
   115   unfolding type_definition.card [OF type_definition_bit0]
       
   116   by simp
       
   117 
       
   118 lemma card_bit1: "CARD('a::finite bit1) = Suc (2 * CARD('a))"
       
   119   unfolding type_definition.card [OF type_definition_bit1]
       
   120   by simp
       
   121 
       
   122 lemma card_num0: "CARD (num0) = 0"
       
   123   by (simp add: infinite_UNIV_nat card_eq_0_iff type_definition.card [OF type_definition_num0])
       
   124 
       
   125 lemmas card_univ_simps [simp] =
       
   126   card_unit
       
   127   card_bool
       
   128   card_prod
       
   129   card_sum
       
   130   card_option
       
   131   card_set
       
   132   card_num1
       
   133   card_bit0
       
   134   card_bit1
       
   135   card_num0
       
   136 
   151 
   137 
   152 
   138 subsection {* Locale for modular arithmetic subtypes *}
   153 subsection {* Locale for modular arithmetic subtypes *}
   139 
   154 
   140 locale mod_type =
   155 locale mod_type =
   286   mod_type "int CARD('a::finite bit0)"
   301   mod_type "int CARD('a::finite bit0)"
   287            "Rep_bit0 :: 'a::finite bit0 \<Rightarrow> int"
   302            "Rep_bit0 :: 'a::finite bit0 \<Rightarrow> int"
   288            "Abs_bit0 :: int \<Rightarrow> 'a::finite bit0"
   303            "Abs_bit0 :: int \<Rightarrow> 'a::finite bit0"
   289 apply (rule mod_type.intro)
   304 apply (rule mod_type.intro)
   290 apply (simp add: int_mult type_definition_bit0)
   305 apply (simp add: int_mult type_definition_bit0)
   291 apply simp
   306 apply (rule one_less_int_card)
   292 using card_finite_pos [where ?'a='a] apply arith
       
   293 apply (rule zero_bit0_def)
   307 apply (rule zero_bit0_def)
   294 apply (rule one_bit0_def)
   308 apply (rule one_bit0_def)
   295 apply (rule plus_bit0_def [unfolded Abs_bit0'_def])
   309 apply (rule plus_bit0_def [unfolded Abs_bit0'_def])
   296 apply (rule times_bit0_def [unfolded Abs_bit0'_def])
   310 apply (rule times_bit0_def [unfolded Abs_bit0'_def])
   297 apply (rule minus_bit0_def [unfolded Abs_bit0'_def])
   311 apply (rule minus_bit0_def [unfolded Abs_bit0'_def])
   303   mod_type "int CARD('a::finite bit1)"
   317   mod_type "int CARD('a::finite bit1)"
   304            "Rep_bit1 :: 'a::finite bit1 \<Rightarrow> int"
   318            "Rep_bit1 :: 'a::finite bit1 \<Rightarrow> int"
   305            "Abs_bit1 :: int \<Rightarrow> 'a::finite bit1"
   319            "Abs_bit1 :: int \<Rightarrow> 'a::finite bit1"
   306 apply (rule mod_type.intro)
   320 apply (rule mod_type.intro)
   307 apply (simp add: int_mult type_definition_bit1)
   321 apply (simp add: int_mult type_definition_bit1)
   308 apply simp
   322 apply (rule one_less_int_card)
   309 apply (rule zero_bit1_def)
   323 apply (rule zero_bit1_def)
   310 apply (rule one_bit1_def)
   324 apply (rule one_bit1_def)
   311 apply (rule plus_bit1_def [unfolded Abs_bit1'_def])
   325 apply (rule plus_bit1_def [unfolded Abs_bit1'_def])
   312 apply (rule times_bit1_def [unfolded Abs_bit1'_def])
   326 apply (rule times_bit1_def [unfolded Abs_bit1'_def])
   313 apply (rule minus_bit1_def [unfolded Abs_bit1'_def])
   327 apply (rule minus_bit1_def [unfolded Abs_bit1'_def])
   420   | bit_tr' b _ = raise Match;
   434   | bit_tr' b _ = raise Match;
   421 
   435 
   422 in [("bit0", bit_tr' 0), ("bit1", bit_tr' 1)] end;
   436 in [("bit0", bit_tr' 0), ("bit1", bit_tr' 1)] end;
   423 *}
   437 *}
   424 
   438 
   425 
       
   426 subsection {* Classes with at least 1 and 2  *}
       
   427 
       
   428 text {* Class finite already captures "at least 1" *}
       
   429 
       
   430 lemma zero_less_card_finite [simp]:
       
   431   "0 < CARD('a::finite)"
       
   432 proof (cases "CARD('a::finite) = 0")
       
   433   case False thus ?thesis by (simp del: card_0_eq)
       
   434 next
       
   435   case True
       
   436   thus ?thesis by (simp add: finite)
       
   437 qed
       
   438 
       
   439 lemma one_le_card_finite [simp]:
       
   440   "Suc 0 <= CARD('a::finite)"
       
   441   by (simp add: less_Suc_eq_le [symmetric] zero_less_card_finite)
       
   442 
       
   443 
       
   444 text {* Class for cardinality "at least 2" *}
       
   445 
       
   446 class card2 = finite + 
       
   447   assumes two_le_card: "2 <= CARD('a)"
       
   448 
       
   449 lemma one_less_card: "Suc 0 < CARD('a::card2)"
       
   450   using two_le_card [where 'a='a] by simp
       
   451 
       
   452 instance bit0 :: (finite) card2
       
   453   by intro_classes (simp add: one_le_card_finite)
       
   454 
       
   455 instance bit1 :: (finite) card2
       
   456   by intro_classes (simp add: one_le_card_finite)
       
   457 
       
   458 subsection {* Examples *}
   439 subsection {* Examples *}
   459 
   440 
   460 lemma "CARD(0) = 0" by simp
   441 lemma "CARD(0) = 0" by simp
   461 lemma "CARD(17) = 17" by simp
   442 lemma "CARD(17) = 17" by simp
   462 lemma "8 * 11 ^ 3 - 6 = (2::5)" by simp
   443 lemma "8 * 11 ^ 3 - 6 = (2::5)" by simp