src/HOL/Limited_Sequence.thy
changeset 51126 df86080de4cb
parent 50092 39898c719339
child 51143 0a2371e7ced3
equal deleted inserted replaced
51125:f90874d3a246 51126:df86080de4cb
       
     1 
       
     2 (* Author: Lukas Bulwahn, TU Muenchen *)
       
     3 
       
     4 header {* Depth-Limited Sequences with failure element *}
       
     5 
       
     6 theory Limited_Sequence
       
     7 imports Lazy_Sequence
       
     8 begin
       
     9 
       
    10 subsection {* Depth-Limited Sequence *}
       
    11 
       
    12 type_synonym 'a dseq = "code_numeral \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option"
       
    13 
       
    14 definition empty :: "'a dseq"
       
    15 where
       
    16   "empty = (\<lambda>_ _. Some Lazy_Sequence.empty)"
       
    17 
       
    18 definition single :: "'a \<Rightarrow> 'a dseq"
       
    19 where
       
    20   "single x = (\<lambda>_ _. Some (Lazy_Sequence.single x))"
       
    21 
       
    22 definition eval :: "'a dseq \<Rightarrow> code_numeral \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option"
       
    23 where
       
    24   [simp]: "eval f i pol = f i pol"
       
    25 
       
    26 definition yield :: "'a dseq \<Rightarrow> code_numeral \<Rightarrow> bool \<Rightarrow> ('a \<times> 'a dseq) option" 
       
    27 where
       
    28   "yield f i pol = (case eval f i pol of
       
    29     None \<Rightarrow> None
       
    30   | Some s \<Rightarrow> (Option.map \<circ> apsnd) (\<lambda>r _ _. Some r) (Lazy_Sequence.yield s))"
       
    31 
       
    32 definition map_seq :: "('a \<Rightarrow> 'b dseq) \<Rightarrow> 'a lazy_sequence \<Rightarrow> 'b dseq"
       
    33 where
       
    34   "map_seq f xq i pol = Option.map Lazy_Sequence.flat
       
    35     (Lazy_Sequence.those (Lazy_Sequence.map (\<lambda>x. f x i pol) xq))"
       
    36 
       
    37 lemma map_seq_code [code]:
       
    38   "map_seq f xq i pol = (case Lazy_Sequence.yield xq of
       
    39     None \<Rightarrow> Some Lazy_Sequence.empty
       
    40   | Some (x, xq') \<Rightarrow> (case eval (f x) i pol of
       
    41       None \<Rightarrow> None
       
    42     | Some yq \<Rightarrow> (case map_seq f xq' i pol of
       
    43         None \<Rightarrow> None
       
    44       | Some zq \<Rightarrow> Some (Lazy_Sequence.append yq zq))))"
       
    45   by (cases xq)
       
    46     (auto simp add: map_seq_def Lazy_Sequence.those_def lazy_sequence_eq_iff split: list.splits option.splits)
       
    47 
       
    48 definition bind :: "'a dseq \<Rightarrow> ('a \<Rightarrow> 'b dseq) \<Rightarrow> 'b dseq"
       
    49 where
       
    50   "bind x f = (\<lambda>i pol. 
       
    51      if i = 0 then
       
    52        (if pol then Some Lazy_Sequence.empty else None)
       
    53      else
       
    54        (case x (i - 1) pol of
       
    55          None \<Rightarrow> None
       
    56        | Some xq \<Rightarrow> map_seq f xq i pol))"
       
    57 
       
    58 definition union :: "'a dseq \<Rightarrow> 'a dseq \<Rightarrow> 'a dseq"
       
    59 where
       
    60   "union x y = (\<lambda>i pol. case (x i pol, y i pol) of
       
    61       (Some xq, Some yq) \<Rightarrow> Some (Lazy_Sequence.append xq yq)
       
    62     | _ \<Rightarrow> None)"
       
    63 
       
    64 definition if_seq :: "bool \<Rightarrow> unit dseq"
       
    65 where
       
    66   "if_seq b = (if b then single () else empty)"
       
    67 
       
    68 definition not_seq :: "unit dseq \<Rightarrow> unit dseq"
       
    69 where
       
    70   "not_seq x = (\<lambda>i pol. case x i (\<not> pol) of
       
    71     None \<Rightarrow> Some Lazy_Sequence.empty
       
    72   | Some xq \<Rightarrow> (case Lazy_Sequence.yield xq of
       
    73       None \<Rightarrow> Some (Lazy_Sequence.single ())
       
    74     | Some _ \<Rightarrow> Some (Lazy_Sequence.empty)))"
       
    75 
       
    76 definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dseq \<Rightarrow> 'b dseq"
       
    77 where
       
    78   "map f g = (\<lambda>i pol. case g i pol of
       
    79      None \<Rightarrow> None
       
    80    | Some xq \<Rightarrow> Some (Lazy_Sequence.map f xq))"
       
    81 
       
    82 
       
    83 subsection {* Positive Depth-Limited Sequence *}
       
    84 
       
    85 type_synonym 'a pos_dseq = "code_numeral \<Rightarrow> 'a Lazy_Sequence.lazy_sequence"
       
    86 
       
    87 definition pos_empty :: "'a pos_dseq"
       
    88 where
       
    89   "pos_empty = (\<lambda>i. Lazy_Sequence.empty)"
       
    90 
       
    91 definition pos_single :: "'a \<Rightarrow> 'a pos_dseq"
       
    92 where
       
    93   "pos_single x = (\<lambda>i. Lazy_Sequence.single x)"
       
    94 
       
    95 definition pos_bind :: "'a pos_dseq \<Rightarrow> ('a \<Rightarrow> 'b pos_dseq) \<Rightarrow> 'b pos_dseq"
       
    96 where
       
    97   "pos_bind x f = (\<lambda>i. Lazy_Sequence.bind (x i) (\<lambda>a. f a i))"
       
    98 
       
    99 definition pos_decr_bind :: "'a pos_dseq \<Rightarrow> ('a \<Rightarrow> 'b pos_dseq) \<Rightarrow> 'b pos_dseq"
       
   100 where
       
   101   "pos_decr_bind x f = (\<lambda>i. 
       
   102      if i = 0 then
       
   103        Lazy_Sequence.empty
       
   104      else
       
   105        Lazy_Sequence.bind (x (i - 1)) (\<lambda>a. f a i))"
       
   106 
       
   107 definition pos_union :: "'a pos_dseq \<Rightarrow> 'a pos_dseq \<Rightarrow> 'a pos_dseq"
       
   108 where
       
   109   "pos_union xq yq = (\<lambda>i. Lazy_Sequence.append (xq i) (yq i))"
       
   110 
       
   111 definition pos_if_seq :: "bool \<Rightarrow> unit pos_dseq"
       
   112 where
       
   113   "pos_if_seq b = (if b then pos_single () else pos_empty)"
       
   114 
       
   115 definition pos_iterate_upto :: "(code_numeral \<Rightarrow> 'a) \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> 'a pos_dseq"
       
   116 where
       
   117   "pos_iterate_upto f n m = (\<lambda>i. Lazy_Sequence.iterate_upto f n m)"
       
   118  
       
   119 definition pos_map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a pos_dseq \<Rightarrow> 'b pos_dseq"
       
   120 where
       
   121   "pos_map f xq = (\<lambda>i. Lazy_Sequence.map f (xq i))"
       
   122 
       
   123 
       
   124 subsection {* Negative Depth-Limited Sequence *}
       
   125 
       
   126 type_synonym 'a neg_dseq = "code_numeral \<Rightarrow> 'a Lazy_Sequence.hit_bound_lazy_sequence"
       
   127 
       
   128 definition neg_empty :: "'a neg_dseq"
       
   129 where
       
   130   "neg_empty = (\<lambda>i. Lazy_Sequence.empty)"
       
   131 
       
   132 definition neg_single :: "'a \<Rightarrow> 'a neg_dseq"
       
   133 where
       
   134   "neg_single x = (\<lambda>i. Lazy_Sequence.hb_single x)"
       
   135 
       
   136 definition neg_bind :: "'a neg_dseq \<Rightarrow> ('a \<Rightarrow> 'b neg_dseq) \<Rightarrow> 'b neg_dseq"
       
   137 where
       
   138   "neg_bind x f = (\<lambda>i. hb_bind (x i) (\<lambda>a. f a i))"
       
   139 
       
   140 definition neg_decr_bind :: "'a neg_dseq \<Rightarrow> ('a \<Rightarrow> 'b neg_dseq) \<Rightarrow> 'b neg_dseq"
       
   141 where
       
   142   "neg_decr_bind x f = (\<lambda>i. 
       
   143      if i = 0 then
       
   144        Lazy_Sequence.hit_bound
       
   145      else
       
   146        hb_bind (x (i - 1)) (\<lambda>a. f a i))"
       
   147 
       
   148 definition neg_union :: "'a neg_dseq \<Rightarrow> 'a neg_dseq \<Rightarrow> 'a neg_dseq"
       
   149 where
       
   150   "neg_union x y = (\<lambda>i. Lazy_Sequence.append (x i) (y i))"
       
   151 
       
   152 definition neg_if_seq :: "bool \<Rightarrow> unit neg_dseq"
       
   153 where
       
   154   "neg_if_seq b = (if b then neg_single () else neg_empty)"
       
   155 
       
   156 definition neg_iterate_upto 
       
   157 where
       
   158   "neg_iterate_upto f n m = (\<lambda>i. Lazy_Sequence.iterate_upto (\<lambda>i. Some (f i)) n m)"
       
   159 
       
   160 definition neg_map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a neg_dseq \<Rightarrow> 'b neg_dseq"
       
   161 where
       
   162   "neg_map f xq = (\<lambda>i. Lazy_Sequence.hb_map f (xq i))"
       
   163 
       
   164 
       
   165 subsection {* Negation *}
       
   166 
       
   167 definition pos_not_seq :: "unit neg_dseq \<Rightarrow> unit pos_dseq"
       
   168 where
       
   169   "pos_not_seq xq = (\<lambda>i. Lazy_Sequence.hb_not_seq (xq (3 * i)))"
       
   170 
       
   171 definition neg_not_seq :: "unit pos_dseq \<Rightarrow> unit neg_dseq"
       
   172 where
       
   173   "neg_not_seq x = (\<lambda>i. case Lazy_Sequence.yield (x i) of
       
   174     None => Lazy_Sequence.hb_single ()
       
   175   | Some ((), xq) => Lazy_Sequence.empty)"
       
   176 
       
   177 
       
   178 ML {*
       
   179 signature LIMITED_SEQUENCE =
       
   180 sig
       
   181   type 'a dseq = int -> bool -> 'a Lazy_Sequence.lazy_sequence option
       
   182   val map : ('a -> 'b) -> 'a dseq -> 'b dseq
       
   183   val yield : 'a dseq -> int -> bool -> ('a * 'a dseq) option
       
   184   val yieldn : int -> 'a dseq -> int -> bool -> 'a list * 'a dseq
       
   185 end;
       
   186 
       
   187 structure Limited_Sequence : LIMITED_SEQUENCE =
       
   188 struct
       
   189 
       
   190 type 'a dseq = int -> bool -> 'a Lazy_Sequence.lazy_sequence option
       
   191 
       
   192 fun map f = @{code Limited_Sequence.map} f;
       
   193 
       
   194 fun yield f = @{code Limited_Sequence.yield} f;
       
   195 
       
   196 fun yieldn n f i pol = (case f i pol of
       
   197     NONE => ([], fn _ => fn _ => NONE)
       
   198   | SOME s => let val (xs, s') = Lazy_Sequence.yieldn n s in (xs, fn _ => fn _ => SOME s') end);
       
   199 
       
   200 end;
       
   201 *}
       
   202 
       
   203 code_reserved Eval Limited_Sequence
       
   204 
       
   205 
       
   206 hide_const (open) yield empty single eval map_seq bind union if_seq not_seq map
       
   207   pos_empty pos_single pos_bind pos_decr_bind pos_union pos_if_seq pos_iterate_upto pos_not_seq pos_map
       
   208   neg_empty neg_single neg_bind neg_decr_bind neg_union neg_if_seq neg_iterate_upto neg_not_seq neg_map
       
   209 
       
   210 hide_fact (open) yield_def empty_def single_def eval_def map_seq_def bind_def union_def
       
   211   if_seq_def not_seq_def map_def
       
   212   pos_empty_def pos_single_def pos_bind_def pos_union_def pos_if_seq_def pos_iterate_upto_def pos_not_seq_def pos_map_def
       
   213   neg_empty_def neg_single_def neg_bind_def neg_union_def neg_if_seq_def neg_iterate_upto_def neg_not_seq_def neg_map_def
       
   214 
       
   215 end
       
   216