src/HOL/Limited_Sequence.thy
changeset 51126 df86080de4cb
parent 50092 39898c719339
child 51143 0a2371e7ced3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Limited_Sequence.thy	Thu Feb 14 15:27:10 2013 +0100
@@ -0,0 +1,216 @@
+
+(* Author: Lukas Bulwahn, TU Muenchen *)
+
+header {* Depth-Limited Sequences with failure element *}
+
+theory Limited_Sequence
+imports Lazy_Sequence
+begin
+
+subsection {* Depth-Limited Sequence *}
+
+type_synonym 'a dseq = "code_numeral \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option"
+
+definition empty :: "'a dseq"
+where
+  "empty = (\<lambda>_ _. Some Lazy_Sequence.empty)"
+
+definition single :: "'a \<Rightarrow> 'a dseq"
+where
+  "single x = (\<lambda>_ _. Some (Lazy_Sequence.single x))"
+
+definition eval :: "'a dseq \<Rightarrow> code_numeral \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option"
+where
+  [simp]: "eval f i pol = f i pol"
+
+definition yield :: "'a dseq \<Rightarrow> code_numeral \<Rightarrow> bool \<Rightarrow> ('a \<times> 'a dseq) option" 
+where
+  "yield f i pol = (case eval f i pol of
+    None \<Rightarrow> None
+  | Some s \<Rightarrow> (Option.map \<circ> apsnd) (\<lambda>r _ _. Some r) (Lazy_Sequence.yield s))"
+
+definition map_seq :: "('a \<Rightarrow> 'b dseq) \<Rightarrow> 'a lazy_sequence \<Rightarrow> 'b dseq"
+where
+  "map_seq f xq i pol = Option.map Lazy_Sequence.flat
+    (Lazy_Sequence.those (Lazy_Sequence.map (\<lambda>x. f x i pol) xq))"
+
+lemma map_seq_code [code]:
+  "map_seq f xq i pol = (case Lazy_Sequence.yield xq of
+    None \<Rightarrow> Some Lazy_Sequence.empty
+  | Some (x, xq') \<Rightarrow> (case eval (f x) i pol of
+      None \<Rightarrow> None
+    | Some yq \<Rightarrow> (case map_seq f xq' i pol of
+        None \<Rightarrow> None
+      | Some zq \<Rightarrow> Some (Lazy_Sequence.append yq zq))))"
+  by (cases xq)
+    (auto simp add: map_seq_def Lazy_Sequence.those_def lazy_sequence_eq_iff split: list.splits option.splits)
+
+definition bind :: "'a dseq \<Rightarrow> ('a \<Rightarrow> 'b dseq) \<Rightarrow> 'b dseq"
+where
+  "bind x f = (\<lambda>i pol. 
+     if i = 0 then
+       (if pol then Some Lazy_Sequence.empty else None)
+     else
+       (case x (i - 1) pol of
+         None \<Rightarrow> None
+       | Some xq \<Rightarrow> map_seq f xq i pol))"
+
+definition union :: "'a dseq \<Rightarrow> 'a dseq \<Rightarrow> 'a dseq"
+where
+  "union x y = (\<lambda>i pol. case (x i pol, y i pol) of
+      (Some xq, Some yq) \<Rightarrow> Some (Lazy_Sequence.append xq yq)
+    | _ \<Rightarrow> None)"
+
+definition if_seq :: "bool \<Rightarrow> unit dseq"
+where
+  "if_seq b = (if b then single () else empty)"
+
+definition not_seq :: "unit dseq \<Rightarrow> unit dseq"
+where
+  "not_seq x = (\<lambda>i pol. case x i (\<not> pol) of
+    None \<Rightarrow> Some Lazy_Sequence.empty
+  | Some xq \<Rightarrow> (case Lazy_Sequence.yield xq of
+      None \<Rightarrow> Some (Lazy_Sequence.single ())
+    | Some _ \<Rightarrow> Some (Lazy_Sequence.empty)))"
+
+definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dseq \<Rightarrow> 'b dseq"
+where
+  "map f g = (\<lambda>i pol. case g i pol of
+     None \<Rightarrow> None
+   | Some xq \<Rightarrow> Some (Lazy_Sequence.map f xq))"
+
+
+subsection {* Positive Depth-Limited Sequence *}
+
+type_synonym 'a pos_dseq = "code_numeral \<Rightarrow> 'a Lazy_Sequence.lazy_sequence"
+
+definition pos_empty :: "'a pos_dseq"
+where
+  "pos_empty = (\<lambda>i. Lazy_Sequence.empty)"
+
+definition pos_single :: "'a \<Rightarrow> 'a pos_dseq"
+where
+  "pos_single x = (\<lambda>i. Lazy_Sequence.single x)"
+
+definition pos_bind :: "'a pos_dseq \<Rightarrow> ('a \<Rightarrow> 'b pos_dseq) \<Rightarrow> 'b pos_dseq"
+where
+  "pos_bind x f = (\<lambda>i. Lazy_Sequence.bind (x i) (\<lambda>a. f a i))"
+
+definition pos_decr_bind :: "'a pos_dseq \<Rightarrow> ('a \<Rightarrow> 'b pos_dseq) \<Rightarrow> 'b pos_dseq"
+where
+  "pos_decr_bind x f = (\<lambda>i. 
+     if i = 0 then
+       Lazy_Sequence.empty
+     else
+       Lazy_Sequence.bind (x (i - 1)) (\<lambda>a. f a i))"
+
+definition pos_union :: "'a pos_dseq \<Rightarrow> 'a pos_dseq \<Rightarrow> 'a pos_dseq"
+where
+  "pos_union xq yq = (\<lambda>i. Lazy_Sequence.append (xq i) (yq i))"
+
+definition pos_if_seq :: "bool \<Rightarrow> unit pos_dseq"
+where
+  "pos_if_seq b = (if b then pos_single () else pos_empty)"
+
+definition pos_iterate_upto :: "(code_numeral \<Rightarrow> 'a) \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> 'a pos_dseq"
+where
+  "pos_iterate_upto f n m = (\<lambda>i. Lazy_Sequence.iterate_upto f n m)"
+ 
+definition pos_map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a pos_dseq \<Rightarrow> 'b pos_dseq"
+where
+  "pos_map f xq = (\<lambda>i. Lazy_Sequence.map f (xq i))"
+
+
+subsection {* Negative Depth-Limited Sequence *}
+
+type_synonym 'a neg_dseq = "code_numeral \<Rightarrow> 'a Lazy_Sequence.hit_bound_lazy_sequence"
+
+definition neg_empty :: "'a neg_dseq"
+where
+  "neg_empty = (\<lambda>i. Lazy_Sequence.empty)"
+
+definition neg_single :: "'a \<Rightarrow> 'a neg_dseq"
+where
+  "neg_single x = (\<lambda>i. Lazy_Sequence.hb_single x)"
+
+definition neg_bind :: "'a neg_dseq \<Rightarrow> ('a \<Rightarrow> 'b neg_dseq) \<Rightarrow> 'b neg_dseq"
+where
+  "neg_bind x f = (\<lambda>i. hb_bind (x i) (\<lambda>a. f a i))"
+
+definition neg_decr_bind :: "'a neg_dseq \<Rightarrow> ('a \<Rightarrow> 'b neg_dseq) \<Rightarrow> 'b neg_dseq"
+where
+  "neg_decr_bind x f = (\<lambda>i. 
+     if i = 0 then
+       Lazy_Sequence.hit_bound
+     else
+       hb_bind (x (i - 1)) (\<lambda>a. f a i))"
+
+definition neg_union :: "'a neg_dseq \<Rightarrow> 'a neg_dseq \<Rightarrow> 'a neg_dseq"
+where
+  "neg_union x y = (\<lambda>i. Lazy_Sequence.append (x i) (y i))"
+
+definition neg_if_seq :: "bool \<Rightarrow> unit neg_dseq"
+where
+  "neg_if_seq b = (if b then neg_single () else neg_empty)"
+
+definition neg_iterate_upto 
+where
+  "neg_iterate_upto f n m = (\<lambda>i. Lazy_Sequence.iterate_upto (\<lambda>i. Some (f i)) n m)"
+
+definition neg_map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a neg_dseq \<Rightarrow> 'b neg_dseq"
+where
+  "neg_map f xq = (\<lambda>i. Lazy_Sequence.hb_map f (xq i))"
+
+
+subsection {* Negation *}
+
+definition pos_not_seq :: "unit neg_dseq \<Rightarrow> unit pos_dseq"
+where
+  "pos_not_seq xq = (\<lambda>i. Lazy_Sequence.hb_not_seq (xq (3 * i)))"
+
+definition neg_not_seq :: "unit pos_dseq \<Rightarrow> unit neg_dseq"
+where
+  "neg_not_seq x = (\<lambda>i. case Lazy_Sequence.yield (x i) of
+    None => Lazy_Sequence.hb_single ()
+  | Some ((), xq) => Lazy_Sequence.empty)"
+
+
+ML {*
+signature LIMITED_SEQUENCE =
+sig
+  type 'a dseq = int -> bool -> 'a Lazy_Sequence.lazy_sequence option
+  val map : ('a -> 'b) -> 'a dseq -> 'b dseq
+  val yield : 'a dseq -> int -> bool -> ('a * 'a dseq) option
+  val yieldn : int -> 'a dseq -> int -> bool -> 'a list * 'a dseq
+end;
+
+structure Limited_Sequence : LIMITED_SEQUENCE =
+struct
+
+type 'a dseq = int -> bool -> 'a Lazy_Sequence.lazy_sequence option
+
+fun map f = @{code Limited_Sequence.map} f;
+
+fun yield f = @{code Limited_Sequence.yield} f;
+
+fun yieldn n f i pol = (case f i pol of
+    NONE => ([], fn _ => fn _ => NONE)
+  | SOME s => let val (xs, s') = Lazy_Sequence.yieldn n s in (xs, fn _ => fn _ => SOME s') end);
+
+end;
+*}
+
+code_reserved Eval Limited_Sequence
+
+
+hide_const (open) yield empty single eval map_seq bind union if_seq not_seq map
+  pos_empty pos_single pos_bind pos_decr_bind pos_union pos_if_seq pos_iterate_upto pos_not_seq pos_map
+  neg_empty neg_single neg_bind neg_decr_bind neg_union neg_if_seq neg_iterate_upto neg_not_seq neg_map
+
+hide_fact (open) yield_def empty_def single_def eval_def map_seq_def bind_def union_def
+  if_seq_def not_seq_def map_def
+  pos_empty_def pos_single_def pos_bind_def pos_union_def pos_if_seq_def pos_iterate_upto_def pos_not_seq_def pos_map_def
+  neg_empty_def neg_single_def neg_bind_def neg_union_def neg_if_seq_def neg_iterate_upto_def neg_not_seq_def neg_map_def
+
+end
+