equal
deleted
inserted
replaced
295 fix x i assume "x \<in> ?A' i" thus "x \<in> ?r" |
295 fix x i assume "x \<in> ?A' i" thus "x \<in> ?r" |
296 by (auto intro!: exI[of _ "from_nat i"]) |
296 by (auto intro!: exI[of _ "from_nat i"]) |
297 qed |
297 qed |
298 have **: "range ?A' = range A" |
298 have **: "range ?A' = range A" |
299 using surj_from_nat |
299 using surj_from_nat |
300 by (auto simp: image_compose intro!: imageI) |
300 by (auto simp: image_comp [symmetric] intro!: imageI) |
301 show ?thesis unfolding * ** .. |
301 show ?thesis unfolding * ** .. |
302 qed |
302 qed |
303 |
303 |
304 lemma (in sigma_algebra) countable_Union [intro]: |
304 lemma (in sigma_algebra) countable_Union [intro]: |
305 assumes "countable X" "X \<subseteq> M" shows "Union X \<in> M" |
305 assumes "countable X" "X \<subseteq> M" shows "Union X \<in> M" |
1491 shows "(g o f) \<in> measurable a c" |
1491 shows "(g o f) \<in> measurable a c" |
1492 proof - |
1492 proof - |
1493 have fab: "f \<in> (space a -> space b)" |
1493 have fab: "f \<in> (space a -> space b)" |
1494 and ba: "\<And>y. y \<in> sets b \<Longrightarrow> (f -` y) \<inter> (space a) \<in> sets a" using f |
1494 and ba: "\<And>y. y \<in> sets b \<Longrightarrow> (f -` y) \<inter> (space a) \<in> sets a" using f |
1495 by (auto simp add: measurable_def) |
1495 by (auto simp add: measurable_def) |
1496 have eq: "\<And>y. f -` g -` y \<inter> space a = f -` (g -` y \<inter> t) \<inter> space a" using t |
1496 have eq: "\<And>y. (g \<circ> f) -` y \<inter> space a = f -` (g -` y \<inter> t) \<inter> space a" using t |
1497 by force |
1497 by force |
1498 show ?thesis |
1498 show ?thesis |
1499 apply (auto simp add: measurable_def vimage_compose) |
1499 apply (auto simp add: measurable_def vimage_comp) |
1500 apply (metis funcset_mem fab g) |
1500 apply (metis funcset_mem fab g) |
1501 apply (subst eq, metis ba cb) |
1501 apply (subst eq) |
|
1502 apply (metis ba cb) |
1502 done |
1503 done |
1503 qed |
1504 qed |
1504 |
1505 |
1505 lemma measurable_mono1: |
1506 lemma measurable_mono1: |
1506 "M' \<subseteq> Pow \<Omega> \<Longrightarrow> M \<subseteq> M' \<Longrightarrow> |
1507 "M' \<subseteq> Pow \<Omega> \<Longrightarrow> M \<subseteq> M' \<Longrightarrow> |