src/HOL/Probability/Sigma_Algebra.thy
changeset 56154 f0a927235162
parent 54420 1e6412c82837
child 56949 d1a937cbf858
equal deleted inserted replaced
56153:2008f1cf3030 56154:f0a927235162
   295     fix x i assume "x \<in> ?A' i" thus "x \<in> ?r"
   295     fix x i assume "x \<in> ?A' i" thus "x \<in> ?r"
   296       by (auto intro!: exI[of _ "from_nat i"])
   296       by (auto intro!: exI[of _ "from_nat i"])
   297   qed
   297   qed
   298   have **: "range ?A' = range A"
   298   have **: "range ?A' = range A"
   299     using surj_from_nat
   299     using surj_from_nat
   300     by (auto simp: image_compose intro!: imageI)
   300     by (auto simp: image_comp [symmetric] intro!: imageI)
   301   show ?thesis unfolding * ** ..
   301   show ?thesis unfolding * ** ..
   302 qed
   302 qed
   303 
   303 
   304 lemma (in sigma_algebra) countable_Union [intro]:
   304 lemma (in sigma_algebra) countable_Union [intro]:
   305   assumes "countable X" "X \<subseteq> M" shows "Union X \<in> M"
   305   assumes "countable X" "X \<subseteq> M" shows "Union X \<in> M"
  1491   shows "(g o f) \<in> measurable a c"
  1491   shows "(g o f) \<in> measurable a c"
  1492 proof -
  1492 proof -
  1493   have fab: "f \<in> (space a -> space b)"
  1493   have fab: "f \<in> (space a -> space b)"
  1494    and ba: "\<And>y. y \<in> sets b \<Longrightarrow> (f -` y) \<inter> (space a) \<in> sets a" using f
  1494    and ba: "\<And>y. y \<in> sets b \<Longrightarrow> (f -` y) \<inter> (space a) \<in> sets a" using f
  1495      by (auto simp add: measurable_def)
  1495      by (auto simp add: measurable_def)
  1496   have eq: "\<And>y. f -` g -` y \<inter> space a = f -` (g -` y \<inter> t) \<inter> space a" using t
  1496   have eq: "\<And>y. (g \<circ> f) -` y \<inter> space a = f -` (g -` y \<inter> t) \<inter> space a" using t
  1497     by force
  1497     by force
  1498   show ?thesis
  1498   show ?thesis
  1499     apply (auto simp add: measurable_def vimage_compose)
  1499     apply (auto simp add: measurable_def vimage_comp)
  1500     apply (metis funcset_mem fab g)
  1500     apply (metis funcset_mem fab g)
  1501     apply (subst eq, metis ba cb)
  1501     apply (subst eq)
       
  1502     apply (metis ba cb)
  1502     done
  1503     done
  1503 qed
  1504 qed
  1504 
  1505 
  1505 lemma measurable_mono1:
  1506 lemma measurable_mono1:
  1506   "M' \<subseteq> Pow \<Omega> \<Longrightarrow> M \<subseteq> M' \<Longrightarrow>
  1507   "M' \<subseteq> Pow \<Omega> \<Longrightarrow> M \<subseteq> M' \<Longrightarrow>