equal
deleted
inserted
replaced
1173 lemma ennreal_of_enat_eSuc[simp]: "ennreal_of_enat (eSuc x) = 1 + ennreal_of_enat x" |
1173 lemma ennreal_of_enat_eSuc[simp]: "ennreal_of_enat (eSuc x) = 1 + ennreal_of_enat x" |
1174 by (cases x) (auto simp: eSuc_enat) |
1174 by (cases x) (auto simp: eSuc_enat) |
1175 |
1175 |
1176 (* Contributed by Dominique Unruh *) |
1176 (* Contributed by Dominique Unruh *) |
1177 lemma ennreal_of_enat_plus[simp]: \<open>ennreal_of_enat (a+b) = ennreal_of_enat a + ennreal_of_enat b\<close> |
1177 lemma ennreal_of_enat_plus[simp]: \<open>ennreal_of_enat (a+b) = ennreal_of_enat a + ennreal_of_enat b\<close> |
1178 apply (induction a) |
1178 apply (induct a) |
1179 apply auto |
1179 apply (metis enat.exhaust ennreal_add_eq_top ennreal_of_enat_enat ennreal_of_enat_infty infinity_ennreal_def of_nat_add plus_enat_simps(1) plus_eq_infty_iff_enat) |
1180 by (smt (z3) add.commute add.right_neutral enat.exhaust enat.simps(4) enat.simps(5) ennreal_add_left_cancel ennreal_of_enat_def infinity_ennreal_def of_nat_add of_nat_eq_enat plus_enat_simps(2)) |
1180 apply simp |
|
1181 done |
1181 |
1182 |
1182 (* Contributed by Dominique Unruh *) |
1183 (* Contributed by Dominique Unruh *) |
1183 lemma sum_ennreal_of_enat[simp]: "(\<Sum>i\<in>I. ennreal_of_enat (f i)) = ennreal_of_enat (sum f I)" |
1184 lemma sum_ennreal_of_enat[simp]: "(\<Sum>i\<in>I. ennreal_of_enat (f i)) = ennreal_of_enat (sum f I)" |
1184 apply (induction I rule: infinite_finite_induct) |
1185 by (induct I rule: infinite_finite_induct) (auto simp: sum_nonneg) |
1185 by (auto simp: sum_nonneg) |
1186 |
1186 |
1187 |
1187 subsection \<open>Topology on \<^typ>\<open>ennreal\<close>\<close> |
1188 subsection \<open>Topology on \<^typ>\<open>ennreal\<close>\<close> |
1188 |
1189 |
1189 lemma enn2ereal_Iio: "enn2ereal -` {..<a} = (if 0 \<le> a then {..< e2ennreal a} else {})" |
1190 lemma enn2ereal_Iio: "enn2ereal -` {..<a} = (if 0 \<le> a then {..< e2ennreal a} else {})" |
1190 using enn2ereal_nonneg |
1191 using enn2ereal_nonneg |