--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CCL/Set.ML Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,355 @@
+(* Title: set/set
+ ID: $Id$
+
+For set.thy.
+
+Modified version of
+ Title: HOL/set
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1991 University of Cambridge
+
+For set.thy. Set theory for higher-order logic. A set is simply a predicate.
+*)
+
+open Set;
+
+val [prem] = goal Set.thy "[| P(a) |] ==> a : {x.P(x)}";
+by (rtac (mem_Collect_iff RS iffD2) 1);
+by (rtac prem 1);
+val CollectI = result();
+
+val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)";
+by (resolve_tac (prems RL [mem_Collect_iff RS iffD1]) 1);
+val CollectD = result();
+
+val [prem] = goal Set.thy "[| !!x. x:A <-> x:B |] ==> A = B";
+by (rtac (set_extension RS iffD2) 1);
+by (rtac (prem RS allI) 1);
+val set_ext = result();
+
+val prems = goal Set.thy "[| !!x. P(x) <-> Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
+by (REPEAT (ares_tac [set_ext,iffI,CollectI] 1 ORELSE
+ eresolve_tac ([CollectD] RL (prems RL [iffD1,iffD2])) 1));
+val Collect_cong = result();
+
+val CollectE = make_elim CollectD;
+
+(*** Bounded quantifiers ***)
+
+val prems = goalw Set.thy [Ball_def]
+ "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)";
+by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
+val ballI = result();
+
+val [major,minor] = goalw Set.thy [Ball_def]
+ "[| ALL x:A. P(x); x:A |] ==> P(x)";
+by (rtac (minor RS (major RS spec RS mp)) 1);
+val bspec = result();
+
+val major::prems = goalw Set.thy [Ball_def]
+ "[| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q";
+by (rtac (major RS spec RS impCE) 1);
+by (REPEAT (eresolve_tac prems 1));
+val ballE = result();
+
+(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*)
+fun ball_tac i = etac ballE i THEN contr_tac (i+1);
+
+val prems = goalw Set.thy [Bex_def]
+ "[| P(x); x:A |] ==> EX x:A. P(x)";
+by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
+val bexI = result();
+
+val bexCI = prove_goal Set.thy
+ "[| EX x:A. ~P(x) ==> P(a); a:A |] ==> EX x:A.P(x)"
+ (fn prems=>
+ [ (rtac classical 1),
+ (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]);
+
+val major::prems = goalw Set.thy [Bex_def]
+ "[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q";
+by (rtac (major RS exE) 1);
+by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
+val bexE = result();
+
+(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*)
+val prems = goal Set.thy
+ "(ALL x:A. True) <-> True";
+by (REPEAT (ares_tac [TrueI,ballI,iffI] 1));
+val ball_rew = result();
+
+(** Congruence rules **)
+
+val prems = goal Set.thy
+ "[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> \
+\ (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))";
+by (resolve_tac (prems RL [ssubst,iffD2]) 1);
+by (REPEAT (ares_tac [ballI,iffI] 1
+ ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
+val ball_cong = result();
+
+val prems = goal Set.thy
+ "[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> \
+\ (EX x:A. P(x)) <-> (EX x:A'. P'(x))";
+by (resolve_tac (prems RL [ssubst,iffD2]) 1);
+by (REPEAT (etac bexE 1
+ ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
+val bex_cong = result();
+
+(*** Rules for subsets ***)
+
+val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B";
+by (REPEAT (ares_tac (prems @ [ballI]) 1));
+val subsetI = result();
+
+(*Rule in Modus Ponens style*)
+val major::prems = goalw Set.thy [subset_def] "[| A <= B; c:A |] ==> c:B";
+by (rtac (major RS bspec) 1);
+by (resolve_tac prems 1);
+val subsetD = result();
+
+(*Classical elimination rule*)
+val major::prems = goalw Set.thy [subset_def]
+ "[| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P";
+by (rtac (major RS ballE) 1);
+by (REPEAT (eresolve_tac prems 1));
+val subsetCE = result();
+
+(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
+fun set_mp_tac i = etac subsetCE i THEN mp_tac i;
+
+val subset_refl = prove_goal Set.thy "A <= A"
+ (fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]);
+
+goal Set.thy "!!A B C. [| A<=B; B<=C |] ==> A<=C";
+br subsetI 1;
+by (REPEAT (eresolve_tac [asm_rl, subsetD] 1));
+val subset_trans = result();
+
+
+(*** Rules for equality ***)
+
+(*Anti-symmetry of the subset relation*)
+val prems = goal Set.thy "[| A <= B; B <= A |] ==> A = B";
+by (rtac (iffI RS set_ext) 1);
+by (REPEAT (ares_tac (prems RL [subsetD]) 1));
+val subset_antisym = result();
+val equalityI = subset_antisym;
+
+(* Equality rules from ZF set theory -- are they appropriate here? *)
+val prems = goal Set.thy "A = B ==> A<=B";
+by (resolve_tac (prems RL [subst]) 1);
+by (rtac subset_refl 1);
+val equalityD1 = result();
+
+val prems = goal Set.thy "A = B ==> B<=A";
+by (resolve_tac (prems RL [subst]) 1);
+by (rtac subset_refl 1);
+val equalityD2 = result();
+
+val prems = goal Set.thy
+ "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P";
+by (resolve_tac prems 1);
+by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
+val equalityE = result();
+
+val major::prems = goal Set.thy
+ "[| A = B; [| c:A; c:B |] ==> P; [| ~ c:A; ~ c:B |] ==> P |] ==> P";
+by (rtac (major RS equalityE) 1);
+by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
+val equalityCE = result();
+
+(*Lemma for creating induction formulae -- for "pattern matching" on p
+ To make the induction hypotheses usable, apply "spec" or "bspec" to
+ put universal quantifiers over the free variables in p. *)
+val prems = goal Set.thy
+ "[| p:A; !!z. z:A ==> p=z --> R |] ==> R";
+by (rtac mp 1);
+by (REPEAT (resolve_tac (refl::prems) 1));
+val setup_induction = result();
+
+goal Set.thy "{x.x:A} = A";
+by (REPEAT (ares_tac [equalityI,subsetI,CollectI] 1 ORELSE eresolve_tac [CollectD] 1));
+val trivial_set = result();
+
+(*** Rules for binary union -- Un ***)
+
+val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B";
+by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1));
+val UnI1 = result();
+
+val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B";
+by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1));
+val UnI2 = result();
+
+(*Classical introduction rule: no commitment to A vs B*)
+val UnCI = prove_goal Set.thy "(~c:B ==> c:A) ==> c : A Un B"
+ (fn prems=>
+ [ (rtac classical 1),
+ (REPEAT (ares_tac (prems@[UnI1,notI]) 1)),
+ (REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]);
+
+val major::prems = goalw Set.thy [Un_def]
+ "[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P";
+by (rtac (major RS CollectD RS disjE) 1);
+by (REPEAT (eresolve_tac prems 1));
+val UnE = result();
+
+
+(*** Rules for small intersection -- Int ***)
+
+val prems = goalw Set.thy [Int_def]
+ "[| c:A; c:B |] ==> c : A Int B";
+by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1));
+val IntI = result();
+
+val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A";
+by (rtac (major RS CollectD RS conjunct1) 1);
+val IntD1 = result();
+
+val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B";
+by (rtac (major RS CollectD RS conjunct2) 1);
+val IntD2 = result();
+
+val [major,minor] = goal Set.thy
+ "[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P";
+by (rtac minor 1);
+by (rtac (major RS IntD1) 1);
+by (rtac (major RS IntD2) 1);
+val IntE = result();
+
+
+(*** Rules for set complement -- Compl ***)
+
+val prems = goalw Set.thy [Compl_def]
+ "[| c:A ==> False |] ==> c : Compl(A)";
+by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
+val ComplI = result();
+
+(*This form, with negated conclusion, works well with the Classical prover.
+ Negated assumptions behave like formulae on the right side of the notional
+ turnstile...*)
+val major::prems = goalw Set.thy [Compl_def]
+ "[| c : Compl(A) |] ==> ~c:A";
+by (rtac (major RS CollectD) 1);
+val ComplD = result();
+
+val ComplE = make_elim ComplD;
+
+
+(*** Empty sets ***)
+
+goalw Set.thy [empty_def] "{x.False} = {}";
+br refl 1;
+val empty_eq = result();
+
+val [prem] = goalw Set.thy [empty_def] "a : {} ==> P";
+by (rtac (prem RS CollectD RS FalseE) 1);
+val emptyD = result();
+
+val emptyE = make_elim emptyD;
+
+val [prem] = goal Set.thy "~ A={} ==> (EX x.x:A)";
+br (prem RS swap) 1;
+br equalityI 1;
+by (ALLGOALS (fast_tac (FOL_cs addSIs [subsetI] addSEs [emptyD])));
+val not_emptyD = result();
+
+(*** Singleton sets ***)
+
+goalw Set.thy [singleton_def] "a : {a}";
+by (rtac CollectI 1);
+by (rtac refl 1);
+val singletonI = result();
+
+val [major] = goalw Set.thy [singleton_def] "b : {a} ==> b=a";
+by (rtac (major RS CollectD) 1);
+val singletonD = result();
+
+val singletonE = make_elim singletonD;
+
+(*** Unions of families ***)
+
+(*The order of the premises presupposes that A is rigid; b may be flexible*)
+val prems = goalw Set.thy [UNION_def]
+ "[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))";
+by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1));
+val UN_I = result();
+
+val major::prems = goalw Set.thy [UNION_def]
+ "[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R";
+by (rtac (major RS CollectD RS bexE) 1);
+by (REPEAT (ares_tac prems 1));
+val UN_E = result();
+
+val prems = goal Set.thy
+ "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
+\ (UN x:A. C(x)) = (UN x:B. D(x))";
+by (REPEAT (etac UN_E 1
+ ORELSE ares_tac ([UN_I,equalityI,subsetI] @
+ (prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
+val UN_cong = result();
+
+(*** Intersections of families -- INTER x:A. B(x) is Inter(B)``A ) *)
+
+val prems = goalw Set.thy [INTER_def]
+ "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
+by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
+val INT_I = result();
+
+val major::prems = goalw Set.thy [INTER_def]
+ "[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)";
+by (rtac (major RS CollectD RS bspec) 1);
+by (resolve_tac prems 1);
+val INT_D = result();
+
+(*"Classical" elimination rule -- does not require proving X:C *)
+val major::prems = goalw Set.thy [INTER_def]
+ "[| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R";
+by (rtac (major RS CollectD RS ballE) 1);
+by (REPEAT (eresolve_tac prems 1));
+val INT_E = result();
+
+val prems = goal Set.thy
+ "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
+\ (INT x:A. C(x)) = (INT x:B. D(x))";
+by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
+by (REPEAT (dtac INT_D 1
+ ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
+val INT_cong = result();
+
+(*** Rules for Unions ***)
+
+(*The order of the premises presupposes that C is rigid; A may be flexible*)
+val prems = goalw Set.thy [Union_def]
+ "[| X:C; A:X |] ==> A : Union(C)";
+by (REPEAT (resolve_tac (prems @ [UN_I]) 1));
+val UnionI = result();
+
+val major::prems = goalw Set.thy [Union_def]
+ "[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R";
+by (rtac (major RS UN_E) 1);
+by (REPEAT (ares_tac prems 1));
+val UnionE = result();
+
+(*** Rules for Inter ***)
+
+val prems = goalw Set.thy [Inter_def]
+ "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
+by (REPEAT (ares_tac ([INT_I] @ prems) 1));
+val InterI = result();
+
+(*A "destruct" rule -- every X in C contains A as an element, but
+ A:X can hold when X:C does not! This rule is analogous to "spec". *)
+val major::prems = goalw Set.thy [Inter_def]
+ "[| A : Inter(C); X:C |] ==> A:X";
+by (rtac (major RS INT_D) 1);
+by (resolve_tac prems 1);
+val InterD = result();
+
+(*"Classical" elimination rule -- does not require proving X:C *)
+val major::prems = goalw Set.thy [Inter_def]
+ "[| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R";
+by (rtac (major RS INT_E) 1);
+by (REPEAT (eresolve_tac prems 1));
+val InterE = result();