src/CTT/ex/equal.ML
changeset 0 a5a9c433f639
child 1294 1358dc040edb
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CTT/ex/equal.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,85 @@
+(*  Title: 	CTT/ex/equal
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1991  University of Cambridge
+
+Equality reasoning by rewriting.
+*)
+
+val prems =
+goal CTT.thy "p : Sum(A,B) ==> split(p,pair) = p : Sum(A,B)";
+by (rtac EqE 1);
+by (resolve_tac elim_rls 1  THEN  resolve_tac prems 1);
+by (rew_tac prems);
+val split_eq = result();
+
+val prems =
+goal CTT.thy
+    "[| A type;  B type;  p : A+B |] ==> when(p,inl,inr) = p : A + B";
+by (rtac EqE 1);
+by (resolve_tac elim_rls 1  THEN  resolve_tac prems 1);
+by (rew_tac prems);
+val when_eq = result();
+
+
+(*in the "rec" formulation of addition, 0+n=n *)
+val prems =
+goal CTT.thy "p:N ==> rec(p,0, %y z.succ(y)) = p : N";
+by (rtac EqE 1);
+by (resolve_tac elim_rls 1  THEN  resolve_tac prems 1);
+by (rew_tac prems);
+result();
+
+
+(*the harder version, n+0=n: recursive, uses induction hypothesis*)
+val prems =
+goal CTT.thy "p:N ==> rec(p,0, %y z.succ(z)) = p : N";
+by (rtac EqE 1);
+by (resolve_tac elim_rls 1  THEN  resolve_tac prems 1);
+by (hyp_rew_tac prems);
+result();
+
+
+(*Associativity of addition*)
+val prems =
+goal CTT.thy
+   "[| a:N;  b:N;  c:N |] ==> rec(rec(a, b, %x y.succ(y)), c, %x y.succ(y)) = \
+\                   rec(a, rec(b, c, %x y.succ(y)), %x y.succ(y)) : N";
+by (NE_tac "a" 1);
+by (hyp_rew_tac prems);
+result();
+
+
+(*Martin-Lof (1984) page 62: pairing is surjective*)
+val prems =
+goal CTT.thy
+    "p : Sum(A,B) ==> <split(p,%x y.x), split(p,%x y.y)> = p : Sum(A,B)";
+by (rtac EqE 1);
+by (resolve_tac elim_rls 1  THEN  resolve_tac prems 1);
+by (DEPTH_SOLVE_1 (rew_tac prems));   (*!!!!!!!*)
+result();
+
+
+val prems =
+goal CTT.thy "[| a : A;  b : B |] ==> \
+\    (lam u. split(u, %v w.<w,v>)) ` <a,b> = <b,a> : SUM x:B.A";
+by (rew_tac prems);
+result();
+
+
+(*a contrived, complicated simplication, requires sum-elimination also*)
+val prems =
+goal CTT.thy
+   "(lam f. lam x. f`(f`x)) ` (lam u. split(u, %v w.<w,v>)) =  \
+\     lam x. x  :  PROD x:(SUM y:N.N). (SUM y:N.N)";
+by (resolve_tac reduction_rls 1);
+by (resolve_tac intrL_rls 3);
+by (rtac EqE 4);
+by (rtac SumE 4  THEN  assume_tac 4);
+(*order of unifiers is essential here*)
+by (rew_tac prems);
+result();
+
+writeln"Reached end of file.";
+(*28 August 1988: loaded this file in 34 seconds*)
+(*2 September 1988: loaded this file in 48 seconds*)