--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Trancl.ML Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,193 @@
+(* Title: ZF/trancl.ML
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1992 University of Cambridge
+
+For trancl.thy. Transitive closure of a relation
+*)
+
+open Trancl;
+
+val major::prems = goalw Trancl.thy [trans_def]
+ "[| trans(r); <a,b>:r; <b,c>:r |] ==> <a,c>:r";
+by (rtac (major RS spec RS spec RS spec RS mp RS mp) 1);
+by (REPEAT (resolve_tac prems 1));
+val transD = result();
+
+goal Trancl.thy "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))";
+by (rtac bnd_monoI 1);
+by (REPEAT (ares_tac [subset_refl, Un_mono, comp_mono] 2));
+by (fast_tac comp_cs 1);
+val rtrancl_bnd_mono = result();
+
+val [prem] = goalw Trancl.thy [rtrancl_def] "r<=s ==> r^* <= s^*";
+by (rtac lfp_mono 1);
+by (REPEAT (resolve_tac [rtrancl_bnd_mono, prem, subset_refl, id_mono,
+ comp_mono, Un_mono, field_mono, Sigma_mono] 1));
+val rtrancl_mono = result();
+
+(* r^* = id(field(r)) Un ( r O r^* ) *)
+val rtrancl_unfold = rtrancl_bnd_mono RS (rtrancl_def RS def_lfp_Tarski);
+
+(** The relation rtrancl **)
+
+val rtrancl_type = standard (rtrancl_def RS def_lfp_subset);
+
+(*Reflexivity of rtrancl*)
+val [prem] = goal Trancl.thy "[| a: field(r) |] ==> <a,a> : r^*";
+by (resolve_tac [rtrancl_unfold RS ssubst] 1);
+by (rtac (prem RS idI RS UnI1) 1);
+val rtrancl_refl = result();
+
+(*Closure under composition with r *)
+val prems = goal Trancl.thy
+ "[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^*";
+by (resolve_tac [rtrancl_unfold RS ssubst] 1);
+by (rtac (compI RS UnI2) 1);
+by (resolve_tac prems 1);
+by (resolve_tac prems 1);
+val rtrancl_into_rtrancl = result();
+
+(*rtrancl of r contains all pairs in r *)
+val prems = goal Trancl.thy "<a,b> : r ==> <a,b> : r^*";
+by (resolve_tac [rtrancl_refl RS rtrancl_into_rtrancl] 1);
+by (REPEAT (resolve_tac (prems@[fieldI1]) 1));
+val r_into_rtrancl = result();
+
+(*The premise ensures that r consists entirely of pairs*)
+val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^*";
+by (cut_facts_tac prems 1);
+by (fast_tac (ZF_cs addIs [r_into_rtrancl]) 1);
+val r_subset_rtrancl = result();
+
+goal Trancl.thy "field(r^*) = field(r)";
+by (fast_tac (eq_cs addIs [r_into_rtrancl]
+ addSDs [rtrancl_type RS subsetD]) 1);
+val rtrancl_field = result();
+
+
+(** standard induction rule **)
+
+val major::prems = goal Trancl.thy
+ "[| <a,b> : r^*; \
+\ !!x. x: field(r) ==> P(<x,x>); \
+\ !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |] ==> P(<x,z>) |] \
+\ ==> P(<a,b>)";
+by (rtac ([rtrancl_def, rtrancl_bnd_mono, major] MRS def_induct) 1);
+by (fast_tac (ZF_cs addIs prems addSEs [idE,compE]) 1);
+val rtrancl_full_induct = result();
+
+(*nice induction rule.
+ Tried adding the typing hypotheses y,z:field(r), but these
+ caused expensive case splits!*)
+val major::prems = goal Trancl.thy
+ "[| <a,b> : r^*; \
+\ P(a); \
+\ !!y z.[| <a,y> : r^*; <y,z> : r; P(y) |] ==> P(z) \
+\ |] ==> P(b)";
+(*by induction on this formula*)
+by (subgoal_tac "ALL y. <a,b> = <a,y> --> P(y)" 1);
+(*now solve first subgoal: this formula is sufficient*)
+by (EVERY1 [etac (spec RS mp), rtac refl]);
+(*now do the induction*)
+by (resolve_tac [major RS rtrancl_full_induct] 1);
+by (ALLGOALS (fast_tac (ZF_cs addIs prems)));
+val rtrancl_induct = result();
+
+(*transitivity of transitive closure!! -- by induction.*)
+goalw Trancl.thy [trans_def] "trans(r^*)";
+by (REPEAT (resolve_tac [allI,impI] 1));
+by (eres_inst_tac [("b","z")] rtrancl_induct 1);
+by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
+val trans_rtrancl = result();
+
+(*elimination of rtrancl -- by induction on a special formula*)
+val major::prems = goal Trancl.thy
+ "[| <a,b> : r^*; (a=b) ==> P; \
+\ !!y.[| <a,y> : r^*; <y,b> : r |] ==> P |] \
+\ ==> P";
+by (subgoal_tac "a = b | (EX y. <a,y> : r^* & <y,b> : r)" 1);
+(*see HOL/trancl*)
+by (rtac (major RS rtrancl_induct) 2);
+by (ALLGOALS (fast_tac (ZF_cs addSEs prems)));
+val rtranclE = result();
+
+
+(**** The relation trancl ****)
+
+(*Transitivity of r^+ is proved by transitivity of r^* *)
+goalw Trancl.thy [trans_def,trancl_def] "trans(r^+)";
+by (safe_tac comp_cs);
+by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1);
+by (REPEAT (assume_tac 1));
+val trans_trancl = result();
+
+(** Conversions between trancl and rtrancl **)
+
+val [major] = goalw Trancl.thy [trancl_def] "<a,b> : r^+ ==> <a,b> : r^*";
+by (resolve_tac [major RS compEpair] 1);
+by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1));
+val trancl_into_rtrancl = result();
+
+(*r^+ contains all pairs in r *)
+val [prem] = goalw Trancl.thy [trancl_def] "<a,b> : r ==> <a,b> : r^+";
+by (REPEAT (ares_tac [prem,compI,rtrancl_refl,fieldI1] 1));
+val r_into_trancl = result();
+
+(*The premise ensures that r consists entirely of pairs*)
+val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^+";
+by (cut_facts_tac prems 1);
+by (fast_tac (ZF_cs addIs [r_into_trancl]) 1);
+val r_subset_trancl = result();
+
+(*intro rule by definition: from r^* and r *)
+val prems = goalw Trancl.thy [trancl_def]
+ "[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^+";
+by (REPEAT (resolve_tac ([compI]@prems) 1));
+val rtrancl_into_trancl1 = result();
+
+(*intro rule from r and r^* *)
+val prems = goal Trancl.thy
+ "[| <a,b> : r; <b,c> : r^* |] ==> <a,c> : r^+";
+by (resolve_tac (prems RL [rtrancl_induct]) 1);
+by (resolve_tac (prems RL [r_into_trancl]) 1);
+by (etac (trans_trancl RS transD) 1);
+by (etac r_into_trancl 1);
+val rtrancl_into_trancl2 = result();
+
+(*Nice induction rule for trancl*)
+val major::prems = goal Trancl.thy
+ "[| <a,b> : r^+; \
+\ !!y. [| <a,y> : r |] ==> P(y); \
+\ !!y z.[| <a,y> : r^+; <y,z> : r; P(y) |] ==> P(z) \
+\ |] ==> P(b)";
+by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
+(*by induction on this formula*)
+by (subgoal_tac "ALL z. <y,z> : r --> P(z)" 1);
+(*now solve first subgoal: this formula is sufficient*)
+by (fast_tac ZF_cs 1);
+by (etac rtrancl_induct 1);
+by (ALLGOALS (fast_tac (ZF_cs addIs (rtrancl_into_trancl1::prems))));
+val trancl_induct = result();
+
+(*elimination of r^+ -- NOT an induction rule*)
+val major::prems = goal Trancl.thy
+ "[| <a,b> : r^+; \
+\ <a,b> : r ==> P; \
+\ !!y.[| <a,y> : r^+; <y,b> : r |] ==> P \
+\ |] ==> P";
+by (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+ & <y,b> : r)" 1);
+by (fast_tac (ZF_cs addIs prems) 1);
+by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
+by (etac rtranclE 1);
+by (ALLGOALS (fast_tac (ZF_cs addIs [rtrancl_into_trancl1])));
+val tranclE = result();
+
+goalw Trancl.thy [trancl_def] "r^+ <= field(r)*field(r)";
+by (fast_tac (ZF_cs addEs [compE, rtrancl_type RS subsetD RS SigmaE2]) 1);
+val trancl_type = result();
+
+val [prem] = goalw Trancl.thy [trancl_def] "r<=s ==> r^+ <= s^+";
+by (REPEAT (resolve_tac [prem, comp_mono, rtrancl_mono] 1));
+val trancl_mono = result();
+