--- a/src/HOL/Combinatorics/Multiset_Permutations.thy Fri Sep 24 13:40:14 2021 +0200
+++ b/src/HOL/Combinatorics/Multiset_Permutations.thy Fri Sep 24 22:23:26 2021 +0200
@@ -131,7 +131,7 @@
lemma permutations_of_multiset_not_empty [simp]: "permutations_of_multiset A \<noteq> {}"
proof -
- from ex_mset[of A] guess xs ..
+ from ex_mset[of A] obtain xs where "mset xs = A" ..
thus ?thesis by (auto simp: permutations_of_multiset_def)
qed
@@ -142,7 +142,8 @@
from ex_mset[of A] obtain ys where ys: "mset ys = A" ..
with A have "mset xs = mset (map f ys)"
by (simp add: permutations_of_multiset_def)
- from mset_eq_permutation[OF this] guess \<sigma> . note \<sigma> = this
+ then obtain \<sigma> where \<sigma>: "\<sigma> permutes {..<length (map f ys)}" "permute_list \<sigma> (map f ys) = xs"
+ by (rule mset_eq_permutation)
with ys have "xs = map f (permute_list \<sigma> ys)"
by (simp add: permute_list_map)
moreover from \<sigma> ys have "permute_list \<sigma> ys \<in> permutations_of_multiset A"