(* Author: Manuel Eberl (TU München)
Defines the set of permutations of a given multiset (or set), i.e. the set of all lists whose
entries correspond to the multiset (resp. set).
*)
section \<open>Permutations of a Multiset\<close>
theory Multiset_Permutations
imports
Complex_Main
Permutations
begin
(* TODO Move *)
lemma mset_tl: "xs \<noteq> [] \<Longrightarrow> mset (tl xs) = mset xs - {#hd xs#}"
by (cases xs) simp_all
lemma mset_set_image_inj:
assumes "inj_on f A"
shows "mset_set (f ` A) = image_mset f (mset_set A)"
proof (cases "finite A")
case True
from this and assms show ?thesis by (induction A) auto
qed (insert assms, simp add: finite_image_iff)
lemma multiset_remove_induct [case_names empty remove]:
assumes "P {#}" "\<And>A. A \<noteq> {#} \<Longrightarrow> (\<And>x. x \<in># A \<Longrightarrow> P (A - {#x#})) \<Longrightarrow> P A"
shows "P A"
proof (induction A rule: full_multiset_induct)
case (less A)
hence IH: "P B" if "B \<subset># A" for B using that by blast
show ?case
proof (cases "A = {#}")
case True
thus ?thesis by (simp add: assms)
next
case False
hence "P (A - {#x#})" if "x \<in># A" for x
using that by (intro IH) (simp add: mset_subset_diff_self)
from False and this show "P A" by (rule assms)
qed
qed
lemma map_list_bind: "map g (List.bind xs f) = List.bind xs (map g \<circ> f)"
by (simp add: List.bind_def map_concat)
lemma mset_eq_mset_set_imp_distinct:
"finite A \<Longrightarrow> mset_set A = mset xs \<Longrightarrow> distinct xs"
proof (induction xs arbitrary: A)
case (Cons x xs A)
from Cons.prems(2) have "x \<in># mset_set A" by simp
with Cons.prems(1) have [simp]: "x \<in> A" by simp
from Cons.prems have "x \<notin># mset_set (A - {x})" by simp
also from Cons.prems have "mset_set (A - {x}) = mset_set A - {#x#}"
by (subst mset_set_Diff) simp_all
also have "mset_set A = mset (x#xs)" by (simp add: Cons.prems)
also have "\<dots> - {#x#} = mset xs" by simp
finally have [simp]: "x \<notin> set xs" by (simp add: in_multiset_in_set)
from Cons.prems show ?case by (auto intro!: Cons.IH[of "A - {x}"] simp: mset_set_Diff)
qed simp_all
(* END TODO *)
subsection \<open>Permutations of a multiset\<close>
definition permutations_of_multiset :: "'a multiset \<Rightarrow> 'a list set" where
"permutations_of_multiset A = {xs. mset xs = A}"
lemma permutations_of_multisetI: "mset xs = A \<Longrightarrow> xs \<in> permutations_of_multiset A"
by (simp add: permutations_of_multiset_def)
lemma permutations_of_multisetD: "xs \<in> permutations_of_multiset A \<Longrightarrow> mset xs = A"
by (simp add: permutations_of_multiset_def)
lemma permutations_of_multiset_Cons_iff:
"x # xs \<in> permutations_of_multiset A \<longleftrightarrow> x \<in># A \<and> xs \<in> permutations_of_multiset (A - {#x#})"
by (auto simp: permutations_of_multiset_def)
lemma permutations_of_multiset_empty [simp]: "permutations_of_multiset {#} = {[]}"
unfolding permutations_of_multiset_def by simp
lemma permutations_of_multiset_nonempty:
assumes nonempty: "A \<noteq> {#}"
shows "permutations_of_multiset A =
(\<Union>x\<in>set_mset A. ((#) x) ` permutations_of_multiset (A - {#x#}))" (is "_ = ?rhs")
proof safe
fix xs assume "xs \<in> permutations_of_multiset A"
hence mset_xs: "mset xs = A" by (simp add: permutations_of_multiset_def)
hence "xs \<noteq> []" by (auto simp: nonempty)
then obtain x xs' where xs: "xs = x # xs'" by (cases xs) simp_all
with mset_xs have "x \<in> set_mset A" "xs' \<in> permutations_of_multiset (A - {#x#})"
by (auto simp: permutations_of_multiset_def)
with xs show "xs \<in> ?rhs" by auto
qed (auto simp: permutations_of_multiset_def)
lemma permutations_of_multiset_singleton [simp]: "permutations_of_multiset {#x#} = {[x]}"
by (simp add: permutations_of_multiset_nonempty)
lemma permutations_of_multiset_doubleton:
"permutations_of_multiset {#x,y#} = {[x,y], [y,x]}"
by (simp add: permutations_of_multiset_nonempty insert_commute)
lemma rev_permutations_of_multiset [simp]:
"rev ` permutations_of_multiset A = permutations_of_multiset A"
proof
have "rev ` rev ` permutations_of_multiset A \<subseteq> rev ` permutations_of_multiset A"
unfolding permutations_of_multiset_def by auto
also have "rev ` rev ` permutations_of_multiset A = permutations_of_multiset A"
by (simp add: image_image)
finally show "permutations_of_multiset A \<subseteq> rev ` permutations_of_multiset A" .
next
show "rev ` permutations_of_multiset A \<subseteq> permutations_of_multiset A"
unfolding permutations_of_multiset_def by auto
qed
lemma length_finite_permutations_of_multiset:
"xs \<in> permutations_of_multiset A \<Longrightarrow> length xs = size A"
by (auto simp: permutations_of_multiset_def)
lemma permutations_of_multiset_lists: "permutations_of_multiset A \<subseteq> lists (set_mset A)"
by (auto simp: permutations_of_multiset_def)
lemma finite_permutations_of_multiset [simp]: "finite (permutations_of_multiset A)"
proof (rule finite_subset)
show "permutations_of_multiset A \<subseteq> {xs. set xs \<subseteq> set_mset A \<and> length xs = size A}"
by (auto simp: permutations_of_multiset_def)
show "finite {xs. set xs \<subseteq> set_mset A \<and> length xs = size A}"
by (rule finite_lists_length_eq) simp_all
qed
lemma permutations_of_multiset_not_empty [simp]: "permutations_of_multiset A \<noteq> {}"
proof -
from ex_mset[of A] obtain xs where "mset xs = A" ..
thus ?thesis by (auto simp: permutations_of_multiset_def)
qed
lemma permutations_of_multiset_image:
"permutations_of_multiset (image_mset f A) = map f ` permutations_of_multiset A"
proof safe
fix xs assume A: "xs \<in> permutations_of_multiset (image_mset f A)"
from ex_mset[of A] obtain ys where ys: "mset ys = A" ..
with A have "mset xs = mset (map f ys)"
by (simp add: permutations_of_multiset_def)
then obtain \<sigma> where \<sigma>: "\<sigma> permutes {..<length (map f ys)}" "permute_list \<sigma> (map f ys) = xs"
by (rule mset_eq_permutation)
with ys have "xs = map f (permute_list \<sigma> ys)"
by (simp add: permute_list_map)
moreover from \<sigma> ys have "permute_list \<sigma> ys \<in> permutations_of_multiset A"
by (simp add: permutations_of_multiset_def)
ultimately show "xs \<in> map f ` permutations_of_multiset A" by blast
qed (auto simp: permutations_of_multiset_def)
subsection \<open>Cardinality of permutations\<close>
text \<open>
In this section, we prove some basic facts about the number of permutations of a multiset.
\<close>
context
begin
private lemma multiset_prod_fact_insert:
"(\<Prod>y\<in>set_mset (A+{#x#}). fact (count (A+{#x#}) y)) =
(count A x + 1) * (\<Prod>y\<in>set_mset A. fact (count A y))"
proof -
have "(\<Prod>y\<in>set_mset (A+{#x#}). fact (count (A+{#x#}) y)) =
(\<Prod>y\<in>set_mset (A+{#x#}). (if y = x then count A x + 1 else 1) * fact (count A y))"
by (intro prod.cong) simp_all
also have "\<dots> = (count A x + 1) * (\<Prod>y\<in>set_mset (A+{#x#}). fact (count A y))"
by (simp add: prod.distrib)
also have "(\<Prod>y\<in>set_mset (A+{#x#}). fact (count A y)) = (\<Prod>y\<in>set_mset A. fact (count A y))"
by (intro prod.mono_neutral_right) (auto simp: not_in_iff)
finally show ?thesis .
qed
private lemma multiset_prod_fact_remove:
"x \<in># A \<Longrightarrow> (\<Prod>y\<in>set_mset A. fact (count A y)) =
count A x * (\<Prod>y\<in>set_mset (A-{#x#}). fact (count (A-{#x#}) y))"
using multiset_prod_fact_insert[of "A - {#x#}" x] by simp
lemma card_permutations_of_multiset_aux:
"card (permutations_of_multiset A) * (\<Prod>x\<in>set_mset A. fact (count A x)) = fact (size A)"
proof (induction A rule: multiset_remove_induct)
case (remove A)
have "card (permutations_of_multiset A) =
card (\<Union>x\<in>set_mset A. (#) x ` permutations_of_multiset (A - {#x#}))"
by (simp add: permutations_of_multiset_nonempty remove.hyps)
also have "\<dots> = (\<Sum>x\<in>set_mset A. card (permutations_of_multiset (A - {#x#})))"
by (subst card_UN_disjoint) (auto simp: card_image)
also have "\<dots> * (\<Prod>x\<in>set_mset A. fact (count A x)) =
(\<Sum>x\<in>set_mset A. card (permutations_of_multiset (A - {#x#})) *
(\<Prod>y\<in>set_mset A. fact (count A y)))"
by (subst sum_distrib_right) simp_all
also have "\<dots> = (\<Sum>x\<in>set_mset A. count A x * fact (size A - 1))"
proof (intro sum.cong refl)
fix x assume x: "x \<in># A"
have "card (permutations_of_multiset (A - {#x#})) * (\<Prod>y\<in>set_mset A. fact (count A y)) =
count A x * (card (permutations_of_multiset (A - {#x#})) *
(\<Prod>y\<in>set_mset (A - {#x#}). fact (count (A - {#x#}) y)))" (is "?lhs = _")
by (subst multiset_prod_fact_remove[OF x]) simp_all
also note remove.IH[OF x]
also from x have "size (A - {#x#}) = size A - 1" by (simp add: size_Diff_submset)
finally show "?lhs = count A x * fact (size A - 1)" .
qed
also have "(\<Sum>x\<in>set_mset A. count A x * fact (size A - 1)) =
size A * fact (size A - 1)"
by (simp add: sum_distrib_right size_multiset_overloaded_eq)
also from remove.hyps have "\<dots> = fact (size A)"
by (cases "size A") auto
finally show ?case .
qed simp_all
theorem card_permutations_of_multiset:
"card (permutations_of_multiset A) = fact (size A) div (\<Prod>x\<in>set_mset A. fact (count A x))"
"(\<Prod>x\<in>set_mset A. fact (count A x) :: nat) dvd fact (size A)"
by (simp_all flip: card_permutations_of_multiset_aux[of A])
lemma card_permutations_of_multiset_insert_aux:
"card (permutations_of_multiset (A + {#x#})) * (count A x + 1) =
(size A + 1) * card (permutations_of_multiset A)"
proof -
note card_permutations_of_multiset_aux[of "A + {#x#}"]
also have "fact (size (A + {#x#})) = (size A + 1) * fact (size A)" by simp
also note multiset_prod_fact_insert[of A x]
also note card_permutations_of_multiset_aux[of A, symmetric]
finally have "card (permutations_of_multiset (A + {#x#})) * (count A x + 1) *
(\<Prod>y\<in>set_mset A. fact (count A y)) =
(size A + 1) * card (permutations_of_multiset A) *
(\<Prod>x\<in>set_mset A. fact (count A x))" by (simp only: mult_ac)
thus ?thesis by (subst (asm) mult_right_cancel) simp_all
qed
lemma card_permutations_of_multiset_remove_aux:
assumes "x \<in># A"
shows "card (permutations_of_multiset A) * count A x =
size A * card (permutations_of_multiset (A - {#x#}))"
proof -
from assms have A: "A - {#x#} + {#x#} = A" by simp
from assms have B: "size A = size (A - {#x#}) + 1"
by (subst A [symmetric], subst size_union) simp
show ?thesis
using card_permutations_of_multiset_insert_aux[of "A - {#x#}" x, unfolded A] assms
by (simp add: B)
qed
lemma real_card_permutations_of_multiset_remove:
assumes "x \<in># A"
shows "real (card (permutations_of_multiset (A - {#x#}))) =
real (card (permutations_of_multiset A) * count A x) / real (size A)"
using assms by (subst card_permutations_of_multiset_remove_aux[OF assms]) auto
lemma real_card_permutations_of_multiset_remove':
assumes "x \<in># A"
shows "real (card (permutations_of_multiset A)) =
real (size A * card (permutations_of_multiset (A - {#x#}))) / real (count A x)"
using assms by (subst card_permutations_of_multiset_remove_aux[OF assms, symmetric]) simp
end
subsection \<open>Permutations of a set\<close>
definition permutations_of_set :: "'a set \<Rightarrow> 'a list set" where
"permutations_of_set A = {xs. set xs = A \<and> distinct xs}"
lemma permutations_of_set_altdef:
"finite A \<Longrightarrow> permutations_of_set A = permutations_of_multiset (mset_set A)"
by (auto simp add: permutations_of_set_def permutations_of_multiset_def mset_set_set
in_multiset_in_set [symmetric] mset_eq_mset_set_imp_distinct)
lemma permutations_of_setI [intro]:
assumes "set xs = A" "distinct xs"
shows "xs \<in> permutations_of_set A"
using assms unfolding permutations_of_set_def by simp
lemma permutations_of_setD:
assumes "xs \<in> permutations_of_set A"
shows "set xs = A" "distinct xs"
using assms unfolding permutations_of_set_def by simp_all
lemma permutations_of_set_lists: "permutations_of_set A \<subseteq> lists A"
unfolding permutations_of_set_def by auto
lemma permutations_of_set_empty [simp]: "permutations_of_set {} = {[]}"
by (auto simp: permutations_of_set_def)
lemma UN_set_permutations_of_set [simp]:
"finite A \<Longrightarrow> (\<Union>xs\<in>permutations_of_set A. set xs) = A"
using finite_distinct_list by (auto simp: permutations_of_set_def)
lemma permutations_of_set_infinite:
"\<not>finite A \<Longrightarrow> permutations_of_set A = {}"
by (auto simp: permutations_of_set_def)
lemma permutations_of_set_nonempty:
"A \<noteq> {} \<Longrightarrow> permutations_of_set A =
(\<Union>x\<in>A. (\<lambda>xs. x # xs) ` permutations_of_set (A - {x}))"
by (cases "finite A")
(simp_all add: permutations_of_multiset_nonempty mset_set_empty_iff mset_set_Diff
permutations_of_set_altdef permutations_of_set_infinite)
lemma permutations_of_set_singleton [simp]: "permutations_of_set {x} = {[x]}"
by (subst permutations_of_set_nonempty) auto
lemma permutations_of_set_doubleton:
"x \<noteq> y \<Longrightarrow> permutations_of_set {x,y} = {[x,y], [y,x]}"
by (subst permutations_of_set_nonempty)
(simp_all add: insert_Diff_if insert_commute)
lemma rev_permutations_of_set [simp]:
"rev ` permutations_of_set A = permutations_of_set A"
by (cases "finite A") (simp_all add: permutations_of_set_altdef permutations_of_set_infinite)
lemma length_finite_permutations_of_set:
"xs \<in> permutations_of_set A \<Longrightarrow> length xs = card A"
by (auto simp: permutations_of_set_def distinct_card)
lemma finite_permutations_of_set [simp]: "finite (permutations_of_set A)"
by (cases "finite A") (simp_all add: permutations_of_set_infinite permutations_of_set_altdef)
lemma permutations_of_set_empty_iff [simp]:
"permutations_of_set A = {} \<longleftrightarrow> \<not>finite A"
unfolding permutations_of_set_def using finite_distinct_list[of A] by auto
lemma card_permutations_of_set [simp]:
"finite A \<Longrightarrow> card (permutations_of_set A) = fact (card A)"
by (simp add: permutations_of_set_altdef card_permutations_of_multiset del: One_nat_def)
lemma permutations_of_set_image_inj:
assumes inj: "inj_on f A"
shows "permutations_of_set (f ` A) = map f ` permutations_of_set A"
by (cases "finite A")
(simp_all add: permutations_of_set_infinite permutations_of_set_altdef
permutations_of_multiset_image mset_set_image_inj inj finite_image_iff)
lemma permutations_of_set_image_permutes:
"\<sigma> permutes A \<Longrightarrow> map \<sigma> ` permutations_of_set A = permutations_of_set A"
by (subst permutations_of_set_image_inj [symmetric])
(simp_all add: permutes_inj_on permutes_image)
subsection \<open>Code generation\<close>
text \<open>
First, we give code an implementation for permutations of lists.
\<close>
declare length_remove1 [termination_simp]
fun permutations_of_list_impl where
"permutations_of_list_impl xs = (if xs = [] then [[]] else
List.bind (remdups xs) (\<lambda>x. map ((#) x) (permutations_of_list_impl (remove1 x xs))))"
fun permutations_of_list_impl_aux where
"permutations_of_list_impl_aux acc xs = (if xs = [] then [acc] else
List.bind (remdups xs) (\<lambda>x. permutations_of_list_impl_aux (x#acc) (remove1 x xs)))"
declare permutations_of_list_impl_aux.simps [simp del]
declare permutations_of_list_impl.simps [simp del]
lemma permutations_of_list_impl_Nil [simp]:
"permutations_of_list_impl [] = [[]]"
by (simp add: permutations_of_list_impl.simps)
lemma permutations_of_list_impl_nonempty:
"xs \<noteq> [] \<Longrightarrow> permutations_of_list_impl xs =
List.bind (remdups xs) (\<lambda>x. map ((#) x) (permutations_of_list_impl (remove1 x xs)))"
by (subst permutations_of_list_impl.simps) simp_all
lemma set_permutations_of_list_impl:
"set (permutations_of_list_impl xs) = permutations_of_multiset (mset xs)"
by (induction xs rule: permutations_of_list_impl.induct)
(subst permutations_of_list_impl.simps,
simp_all add: permutations_of_multiset_nonempty set_list_bind)
lemma distinct_permutations_of_list_impl:
"distinct (permutations_of_list_impl xs)"
by (induction xs rule: permutations_of_list_impl.induct,
subst permutations_of_list_impl.simps)
(auto intro!: distinct_list_bind simp: distinct_map o_def disjoint_family_on_def)
lemma permutations_of_list_impl_aux_correct':
"permutations_of_list_impl_aux acc xs =
map (\<lambda>xs. rev xs @ acc) (permutations_of_list_impl xs)"
by (induction acc xs rule: permutations_of_list_impl_aux.induct,
subst permutations_of_list_impl_aux.simps, subst permutations_of_list_impl.simps)
(auto simp: map_list_bind intro!: list_bind_cong)
lemma permutations_of_list_impl_aux_correct:
"permutations_of_list_impl_aux [] xs = map rev (permutations_of_list_impl xs)"
by (simp add: permutations_of_list_impl_aux_correct')
lemma distinct_permutations_of_list_impl_aux:
"distinct (permutations_of_list_impl_aux acc xs)"
by (simp add: permutations_of_list_impl_aux_correct' distinct_map
distinct_permutations_of_list_impl inj_on_def)
lemma set_permutations_of_list_impl_aux:
"set (permutations_of_list_impl_aux [] xs) = permutations_of_multiset (mset xs)"
by (simp add: permutations_of_list_impl_aux_correct set_permutations_of_list_impl)
declare set_permutations_of_list_impl_aux [symmetric, code]
value [code] "permutations_of_multiset {#1,2,3,4::int#}"
text \<open>
Now we turn to permutations of sets. We define an auxiliary version with an
accumulator to avoid having to map over the results.
\<close>
function permutations_of_set_aux where
"permutations_of_set_aux acc A =
(if \<not>finite A then {} else if A = {} then {acc} else
(\<Union>x\<in>A. permutations_of_set_aux (x#acc) (A - {x})))"
by auto
termination by (relation "Wellfounded.measure (card \<circ> snd)") (simp_all add: card_gt_0_iff)
lemma permutations_of_set_aux_altdef:
"permutations_of_set_aux acc A = (\<lambda>xs. rev xs @ acc) ` permutations_of_set A"
proof (cases "finite A")
assume "finite A"
thus ?thesis
proof (induction A arbitrary: acc rule: finite_psubset_induct)
case (psubset A acc)
show ?case
proof (cases "A = {}")
case False
note [simp del] = permutations_of_set_aux.simps
from psubset.hyps False
have "permutations_of_set_aux acc A =
(\<Union>y\<in>A. permutations_of_set_aux (y#acc) (A - {y}))"
by (subst permutations_of_set_aux.simps) simp_all
also have "\<dots> = (\<Union>y\<in>A. (\<lambda>xs. rev xs @ acc) ` (\<lambda>xs. y # xs) ` permutations_of_set (A - {y}))"
apply (rule arg_cong [of _ _ Union], rule image_cong)
apply (simp_all add: image_image)
apply (subst psubset)
apply auto
done
also from False have "\<dots> = (\<lambda>xs. rev xs @ acc) ` permutations_of_set A"
by (subst (2) permutations_of_set_nonempty) (simp_all add: image_UN)
finally show ?thesis .
qed simp_all
qed
qed (simp_all add: permutations_of_set_infinite)
declare permutations_of_set_aux.simps [simp del]
lemma permutations_of_set_aux_correct:
"permutations_of_set_aux [] A = permutations_of_set A"
by (simp add: permutations_of_set_aux_altdef)
text \<open>
In another refinement step, we define a version on lists.
\<close>
declare length_remove1 [termination_simp]
fun permutations_of_set_aux_list where
"permutations_of_set_aux_list acc xs =
(if xs = [] then [acc] else
List.bind xs (\<lambda>x. permutations_of_set_aux_list (x#acc) (List.remove1 x xs)))"
definition permutations_of_set_list where
"permutations_of_set_list xs = permutations_of_set_aux_list [] xs"
declare permutations_of_set_aux_list.simps [simp del]
lemma permutations_of_set_aux_list_refine:
assumes "distinct xs"
shows "set (permutations_of_set_aux_list acc xs) = permutations_of_set_aux acc (set xs)"
using assms
by (induction acc xs rule: permutations_of_set_aux_list.induct)
(subst permutations_of_set_aux_list.simps,
subst permutations_of_set_aux.simps,
simp_all add: set_list_bind)
text \<open>
The permutation lists contain no duplicates if the inputs contain no duplicates.
Therefore, these functions can easily be used when working with a representation of
sets by distinct lists.
The same approach should generalise to any kind of set implementation that supports
a monadic bind operation, and since the results are disjoint, merging should be cheap.
\<close>
lemma distinct_permutations_of_set_aux_list:
"distinct xs \<Longrightarrow> distinct (permutations_of_set_aux_list acc xs)"
by (induction acc xs rule: permutations_of_set_aux_list.induct)
(subst permutations_of_set_aux_list.simps,
auto intro!: distinct_list_bind simp: disjoint_family_on_def
permutations_of_set_aux_list_refine permutations_of_set_aux_altdef)
lemma distinct_permutations_of_set_list:
"distinct xs \<Longrightarrow> distinct (permutations_of_set_list xs)"
by (simp add: permutations_of_set_list_def distinct_permutations_of_set_aux_list)
lemma permutations_of_list:
"permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))"
by (simp add: permutations_of_set_aux_correct [symmetric]
permutations_of_set_aux_list_refine permutations_of_set_list_def)
lemma permutations_of_list_code [code]:
"permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))"
"permutations_of_set (List.coset xs) =
Code.abort (STR ''Permutation of set complement not supported'')
(\<lambda>_. permutations_of_set (List.coset xs))"
by (simp_all add: permutations_of_list)
value [code] "permutations_of_set (set ''abcd'')"
end