src/HOL/Boolean_Algebras.thy
changeset 79099 05a753360b25
parent 78099 4d9349989d94
child 81125 ec121999a9cb
--- a/src/HOL/Boolean_Algebras.thy	Wed Nov 29 21:29:00 2023 +0100
+++ b/src/HOL/Boolean_Algebras.thy	Thu Nov 30 16:56:44 2023 +0100
@@ -549,9 +549,12 @@
   using inf_shunt [of \<open>- x\<close> \<open>- y\<close>, symmetric] 
   by (simp flip: compl_sup compl_top_eq)
 
-lemma diff_shunt_var: "(x - y = \<bottom>) \<longleftrightarrow> (x \<le> y)"
+lemma diff_shunt_var[simp]: "(x - y = \<bottom>) \<longleftrightarrow> (x \<le> y)"
   by (simp add: diff_eq inf_shunt)
 
+lemma diff_shunt[simp]: "(\<bottom> = x - y) \<longleftrightarrow> (x \<le> y)"
+  by (auto simp flip: diff_shunt_var)
+
 lemma sup_neg_inf:
   \<open>p \<le> q \<squnion> r \<longleftrightarrow> p \<sqinter> -q \<le> r\<close>  (is \<open>?P \<longleftrightarrow> ?Q\<close>)
 proof