--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Complex/ex/Sqrt_Script.thy Mon May 05 18:22:31 2003 +0200
@@ -0,0 +1,78 @@
+(* Title: HOL/Hyperreal/ex/Sqrt_Script.thy
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 2001 University of Cambridge
+*)
+
+header {* Square roots of primes are irrational (script version) *}
+
+theory Sqrt_Script = Primes + Hyperreal:
+
+text {*
+ \medskip Contrast this linear Isabelle/Isar script with Markus
+ Wenzel's more mathematical version.
+*}
+
+subsection {* Preliminaries *}
+
+lemma prime_nonzero: "p \<in> prime \<Longrightarrow> p \<noteq> 0"
+ by (force simp add: prime_def)
+
+lemma prime_dvd_other_side:
+ "n * n = p * (k * k) \<Longrightarrow> p \<in> prime \<Longrightarrow> p dvd n"
+ apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult)
+ apply (rule_tac j = "k * k" in dvd_mult_left, simp)
+ done
+
+lemma reduction: "p \<in> prime \<Longrightarrow>
+ 0 < k \<Longrightarrow> k * k = p * (j * j) \<Longrightarrow> k < p * j \<and> 0 < j"
+ apply (rule ccontr)
+ apply (simp add: linorder_not_less)
+ apply (erule disjE)
+ apply (frule mult_le_mono, assumption)
+ apply auto
+ apply (force simp add: prime_def)
+ done
+
+lemma rearrange: "(j::nat) * (p * j) = k * k \<Longrightarrow> k * k = p * (j * j)"
+ by (simp add: mult_ac)
+
+lemma prime_not_square:
+ "p \<in> prime \<Longrightarrow> (\<And>k. 0 < k \<Longrightarrow> m * m \<noteq> p * (k * k))"
+ apply (induct m rule: nat_less_induct)
+ apply clarify
+ apply (frule prime_dvd_other_side, assumption)
+ apply (erule dvdE)
+ apply (simp add: nat_mult_eq_cancel_disj prime_nonzero)
+ apply (blast dest: rearrange reduction)
+ done
+
+
+subsection {* The set of rational numbers *}
+
+constdefs
+ rationals :: "real set" ("\<rat>")
+ "\<rat> \<equiv> {x. \<exists>m n. n \<noteq> 0 \<and> \<bar>x\<bar> = real (m::nat) / real (n::nat)}"
+
+
+subsection {* Main theorem *}
+
+text {*
+ The square root of any prime number (including @{text 2}) is
+ irrational.
+*}
+
+theorem prime_sqrt_irrational:
+ "p \<in> prime \<Longrightarrow> x * x = real p \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<notin> \<rat>"
+ apply (simp add: rationals_def real_abs_def)
+ apply clarify
+ apply (erule_tac P = "real m / real n * ?x = ?y" in rev_mp)
+ apply (simp del: real_of_nat_mult
+ add: real_divide_eq_eq prime_not_square
+ real_of_nat_mult [symmetric])
+ done
+
+lemmas two_sqrt_irrational =
+ prime_sqrt_irrational [OF two_is_prime]
+
+end