doc-src/TutorialI/IsarOverview/Isar/Induction.thy
changeset 13768 1764a81b7a0a
parent 13767 731171c27be9
child 13770 8060978feaf4
--- a/doc-src/TutorialI/IsarOverview/Isar/Induction.thy	Sun Dec 29 18:31:31 2002 +0100
+++ b/doc-src/TutorialI/IsarOverview/Isar/Induction.thy	Sun Dec 29 23:12:39 2002 +0100
@@ -48,7 +48,7 @@
 The same game can be played with other datatypes, for example lists,
 where @{term tl} is the tail of a list, and @{text length} returns a
 natural number:
-\Tweakskip
+%\Tweakskip
 *}
 (*<*)declare length_tl[simp del](*>*)
 lemma "length(tl xs) = length xs - 1"
@@ -286,7 +286,8 @@
 equation.
 
 The proof is so simple that it can be condensed to
-\Tweakskip*}
+%\Tweakskip
+*}
 (*<*)lemma "xs \<noteq> [] \<Longrightarrow> rot xs = tl xs @ [hd xs]"(*>*)
 by (induct xs rule: rot.induct, simp_all)