doc-src/TutorialI/IsarOverview/Isar/Induction.thy
author nipkow
Sun, 29 Dec 2002 23:12:39 +0100
changeset 13768 1764a81b7a0a
parent 13767 731171c27be9
child 13770 8060978feaf4
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*<*)theory Induction = Main:(*>*)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
     2
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
     3
section{*Case distinction and induction \label{sec:Induct}*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
     4
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     5
text{* Computer science applications abound with inductively defined
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     6
structures, which is why we treat them in more detail. HOL already
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     7
comes with a datatype of lists with the two constructors @{text Nil}
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     8
and @{text Cons}. @{text Nil} is written @{term"[]"} and @{text"Cons x
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     9
xs"} is written @{term"x # xs"}.  *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    10
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    11
subsection{*Case distinction*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    12
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    13
text{* We have already met the @{text cases} method for performing
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    14
binary case splits. Here is another example: *}
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    15
lemma "\<not> A \<or> A"
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    16
proof cases
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    17
  assume "A" thus ?thesis ..
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    18
next
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    19
  assume "\<not> A" thus ?thesis ..
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    20
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    21
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    22
text{*\noindent The two cases must come in this order because @{text
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    23
cases} merely abbreviates @{text"(rule case_split_thm)"} where
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    24
@{thm[source] case_split_thm} is @{thm case_split_thm}. If we reverse
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    25
the order of the two cases in the proof, the first case would prove
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    26
@{prop"\<not> A \<Longrightarrow> \<not> A \<or> A"} which would solve the first premise of
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    27
@{thm[source] case_split_thm}, instantiating @{text ?P} with @{term "\<not>
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    28
A"}, thus making the second premise @{prop"\<not> \<not> A \<Longrightarrow> \<not> A \<or> A"}.
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    29
Therefore the order of subgoals is not always completely arbitrary.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    30
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    31
The above proof is appropriate if @{term A} is textually small.
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    32
However, if @{term A} is large, we do not want to repeat it. This can
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    33
be avoided by the following idiom *}
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    34
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    35
lemma "\<not> A \<or> A"
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    36
proof (cases "A")
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    37
  case True thus ?thesis ..
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    38
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    39
  case False thus ?thesis ..
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    40
qed
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    41
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    42
text{*\noindent which is like the previous proof but instantiates
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    43
@{text ?P} right away with @{term A}. Thus we could prove the two
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    44
cases in any order. The phrase `\isakeyword{case}~@{text True}'
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    45
abbreviates `\isakeyword{assume}~@{text"True: A"}' and analogously for
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    46
@{text"False"} and @{prop"\<not>A"}.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    47
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    48
The same game can be played with other datatypes, for example lists,
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    49
where @{term tl} is the tail of a list, and @{text length} returns a
13767
731171c27be9 *** empty log message ***
nipkow
parents: 13766
diff changeset
    50
natural number:
13768
1764a81b7a0a *** empty log message ***
nipkow
parents: 13767
diff changeset
    51
%\Tweakskip
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    52
*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    53
(*<*)declare length_tl[simp del](*>*)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    54
lemma "length(tl xs) = length xs - 1"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    55
proof (cases xs)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    56
  case Nil thus ?thesis by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    57
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    58
  case Cons thus ?thesis by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    59
qed
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    60
text{*\noindent Here `\isakeyword{case}~@{text Nil}' abbreviates
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    61
`\isakeyword{assume}~@{text"Nil:"}~@{prop"xs = []"}' and
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    62
`\isakeyword{case}~@{text Cons}'
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    63
abbreviates `\isakeyword{fix}~@{text"? ??"}
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    64
\isakeyword{assume}~@{text"Cons:"}~@{text"xs = ? # ??"}'
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    65
where @{text"?"} and @{text"??"}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    66
stand for variable names that have been chosen by the system.
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    67
Therefore we cannot refer to them.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    68
Luckily, this proof is simple enough we do not need to refer to them.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    69
However, sometimes one may have to. Hence Isar offers a simple scheme for
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    70
naming those variables: replace the anonymous @{text Cons} by
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    71
@{text"(Cons y ys)"}, which abbreviates `\isakeyword{fix}~@{text"y ys"}
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    72
\isakeyword{assume}~@{text"Cons:"}~@{text"xs = y # ys"}'.
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    73
In each \isakeyword{case} the assumption can be
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    74
referred to inside the proof by the name of the constructor. In
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    75
Section~\ref{sec:full-Ind} below we will come across an example
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    76
of this. *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    77
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    78
subsection{*Structural induction*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    79
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
    80
text{* We start with an inductive proof where both cases are proved automatically: *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    81
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    82
by (induct n, simp_all)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    83
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    84
text{*\noindent If we want to expose more of the structure of the
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    85
proof, we can use pattern matching to avoid having to repeat the goal
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    86
statement: *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    87
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)" (is "?P n")
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    88
proof (induct n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    89
  show "?P 0" by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    90
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    91
  fix n assume "?P n"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    92
  thus "?P(Suc n)" by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    93
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    94
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    95
text{* \noindent We could refine this further to show more of the equational
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    96
proof. Instead we explore the same avenue as for case distinctions:
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    97
introducing context via the \isakeyword{case} command: *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    98
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    99
proof (induct n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   100
  case 0 show ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   101
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   102
  case Suc thus ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   103
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   104
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   105
text{* \noindent The implicitly defined @{text ?case} refers to the
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   106
corresponding case to be proved, i.e.\ @{text"?P 0"} in the first case and
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   107
@{text"?P(Suc n)"} in the second case. Context \isakeyword{case}~@{text 0} is
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   108
empty whereas \isakeyword{case}~@{text Suc} assumes @{text"?P n"}. Again we
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   109
have the same problem as with case distinctions: we cannot refer to an anonymous @{term n}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   110
in the induction step because it has not been introduced via \isakeyword{fix}
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
   111
(in contrast to the previous proof). The solution is the one outlined for
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
   112
@{text Cons} above: replace @{term Suc} by @{text"(Suc i)"}: *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   113
lemma fixes n::nat shows "n < n*n + 1"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   114
proof (induct n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   115
  case 0 show ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   116
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   117
  case (Suc i) thus "Suc i < Suc i * Suc i + 1" by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   118
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   119
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   120
text{* \noindent Of course we could again have written
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   121
\isakeyword{thus}~@{text ?case} instead of giving the term explicitly
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   122
but we wanted to use @{term i} somewhere. *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   123
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   124
subsection{*Induction formulae involving @{text"\<And>"} or @{text"\<Longrightarrow>"}\label{sec:full-Ind}*}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   125
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   126
text{* Let us now consider the situation where the goal to be proved contains
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   127
@{text"\<And>"} or @{text"\<Longrightarrow>"}, say @{prop"\<And>x. P x \<Longrightarrow> Q x"} --- motivation and a
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   128
real example follow shortly.  This means that in each case of the induction,
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   129
@{text ?case} would be of the form @{prop"\<And>x. P' x \<Longrightarrow> Q' x"}.  Thus the
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   130
first proof steps will be the canonical ones, fixing @{text x} and assuming
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   131
@{prop"P' x"}. To avoid this tedium, induction performs these steps
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   132
automatically: for example in case @{text"(Suc n)"}, @{text ?case} is only
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   133
@{prop"Q' x"} whereas the assumptions (named @{term Suc}!) contain both the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   134
usual induction hypothesis \emph{and} @{prop"P' x"}.
13767
731171c27be9 *** empty log message ***
nipkow
parents: 13766
diff changeset
   135
It should be clear how this generalises to more complex formulae.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   136
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
   137
As an example we will now prove complete induction via
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   138
structural induction. *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   139
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   140
lemma assumes A: "(\<And>n. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   141
  shows "P(n::nat)"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   142
proof (rule A)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   143
  show "\<And>m. m < n \<Longrightarrow> P m"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   144
  proof (induct n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   145
    case 0 thus ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   146
  next
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   147
    case (Suc n)   -- {*\isakeyword{fix} @{term m} \isakeyword{assume} @{text Suc}: @{text[source]"?m < n \<Longrightarrow> P ?m"} @{prop[source]"m < Suc n"}*}
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   148
    show ?case    -- {*@{term ?case}*}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   149
    proof cases
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   150
      assume eq: "m = n"
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   151
      from Suc and A have "P n" by blast
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   152
      with eq show "P m" by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   153
    next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   154
      assume "m \<noteq> n"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   155
      with Suc have "m < n" by arith
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   156
      thus "P m" by(rule Suc)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   157
    qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   158
  qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   159
qed
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   160
text{* \noindent Given the explanations above and the comments in the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   161
proof text (only necessary for novices), the proof should be quite
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   162
readable.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   163
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   164
The statement of the lemma is interesting because it deviates from the style in
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   165
the Tutorial~\cite{LNCS2283}, which suggests to introduce @{text"\<forall>"} or
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   166
@{text"\<longrightarrow>"} into a theorem to strengthen it for induction. In Isar
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   167
proofs we can use @{text"\<And>"} and @{text"\<Longrightarrow>"} instead. This simplifies the
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   168
proof and means we do not have to convert between the two kinds of
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   169
connectives.
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   170
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   171
Note that in a nested induction over the same data type, the inner
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   172
case labels hide the outer ones of the same name. If you want to refer
13766
fb78ee03c391 *** empty log message ***
nipkow
parents: 13765
diff changeset
   173
to the outer ones inside, you need to name them on the outside, e.g.\
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   174
\isakeyword{note}~@{text"outer_IH = Suc"}.  *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   175
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   176
subsection{*Rule induction*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   177
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   178
text{* HOL also supports inductively defined sets. See \cite{LNCS2283}
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   179
for details. As an example we define our own version of the reflexive
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   180
transitive closure of a relation --- HOL provides a predefined one as well.*}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   181
consts rtc :: "('a \<times> 'a)set \<Rightarrow> ('a \<times> 'a)set"   ("_*" [1000] 999)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   182
inductive "r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   183
intros
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   184
refl:  "(x,x) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   185
step:  "\<lbrakk> (x,y) \<in> r; (y,z) \<in> r* \<rbrakk> \<Longrightarrow> (x,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   186
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   187
text{* \noindent
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   188
First the constant is declared as a function on binary
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   189
relations (with concrete syntax @{term"r*"} instead of @{text"rtc
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   190
r"}), then the defining clauses are given. We will now prove that
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   191
@{term"r*"} is indeed transitive: *}
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   192
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   193
lemma assumes A: "(x,y) \<in> r*" shows "(y,z) \<in> r* \<Longrightarrow> (x,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   194
using A
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   195
proof induct
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   196
  case refl thus ?case .
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   197
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   198
  case step thus ?case by(blast intro: rtc.step)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   199
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   200
text{*\noindent Rule induction is triggered by a fact $(x_1,\dots,x_n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   201
\in R$ piped into the proof, here \isakeyword{using}~@{text A}. The
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   202
proof itself follows the inductive definition very
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   203
closely: there is one case for each rule, and it has the same name as
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   204
the rule, analogous to structural induction.
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   205
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   206
However, this proof is rather terse. Here is a more readable version:
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   207
*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   208
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   209
lemma assumes A: "(x,y) \<in> r*" and B: "(y,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   210
  shows "(x,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   211
proof -
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   212
  from A B show ?thesis
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   213
  proof induct
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   214
    fix x assume "(x,z) \<in> r*"  -- {*@{text B}[@{text y} := @{text x}]*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   215
    thus "(x,z) \<in> r*" .
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   216
  next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   217
    fix x' x y
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   218
    assume 1: "(x',x) \<in> r" and
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   219
           IH: "(y,z) \<in> r* \<Longrightarrow> (x,z) \<in> r*" and
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   220
           B:  "(y,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   221
    from 1 IH[OF B] show "(x',z) \<in> r*" by(rule rtc.step)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   222
  qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   223
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   224
text{*\noindent We start the proof with \isakeyword{from}~@{text"A
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   225
B"}. Only @{text A} is ``consumed'' by the induction step.
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   226
Since @{text B} is left over we don't just prove @{text
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   227
?thesis} but @{text"B \<Longrightarrow> ?thesis"}, just as in the previous proof. The
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   228
base case is trivial. In the assumptions for the induction step we can
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   229
see very clearly how things fit together and permit ourselves the
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   230
obvious forward step @{text"IH[OF B]"}.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   231
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   232
The notation `\isakeyword{case}~\isa{(}\emph{constructor} \emph{vars}\isa{)}'
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   233
is also supported for inductive definitions. The \emph{constructor} is (the
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   234
name of) the rule and the \emph{vars} fix the free variables in the
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   235
rule; the order of the \emph{vars} must correspond to the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   236
\emph{alphabetical order} of the variables as they appear in the rule.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   237
For example, we could start the above detailed proof of the induction
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   238
with \isakeyword{case}~\isa{(step x' x y)}. However, we can then only
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   239
refer to the assumptions named \isa{step} collectively and not
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   240
individually, as the above proof requires.  *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   241
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   242
subsection{*More induction*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   243
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   244
text{* We close the section by demonstrating how arbitrary induction
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   245
rules are applied. As a simple example we have chosen recursion
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   246
induction, i.e.\ induction based on a recursive function
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   247
definition. However, most of what we show works for induction in
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   248
general.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   249
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   250
The example is an unusual definition of rotation: *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   251
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   252
consts rot :: "'a list \<Rightarrow> 'a list"
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   253
recdef rot "measure length"  --"for the internal termination proof"
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   254
"rot [] = []"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   255
"rot [x] = [x]"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   256
"rot (x#y#zs) = y # rot(x#zs)"
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   257
text{*\noindent This yields, among other things, the induction rule
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   258
@{thm[source]rot.induct}: @{thm[display]rot.induct[no_vars]}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   259
In the following proof we rely on a default naming scheme for cases: they are
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   260
called 1, 2, etc, unless they have been named explicitly. The latter happens
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   261
only with datatypes and inductively defined sets, but not with recursive
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   262
functions. *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   263
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   264
lemma "xs \<noteq> [] \<Longrightarrow> rot xs = tl xs @ [hd xs]"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   265
proof (induct xs rule: rot.induct)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   266
  case 1 thus ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   267
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   268
  case 2 show ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   269
next
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   270
  case (3 a b cs)
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   271
  have "rot (a # b # cs) = b # rot(a # cs)" by simp
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   272
  also have "\<dots> = b # tl(a # cs) @ [hd(a # cs)]" by(simp add:3)
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   273
  also have "\<dots> = tl (a # b # cs) @ [hd (a # b # cs)]" by simp
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   274
  finally show ?case .
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   275
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   276
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   277
text{*\noindent
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   278
The third case is only shown in gory detail (see \cite{BauerW-TPHOLs01}
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   279
for how to reason with chains of equations) to demonstrate that the
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   280
`\isakeyword{case}~\isa{(}\emph{constructor} \emph{vars}\isa{)}' notation also
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   281
works for arbitrary induction theorems with numbered cases. The order
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   282
of the \emph{vars} corresponds to the order of the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   283
@{text"\<And>"}-quantified variables in each case of the induction
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   284
theorem. For induction theorems produced by \isakeyword{recdef} it is
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   285
the order in which the variables appear on the left-hand side of the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   286
equation.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   287
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   288
The proof is so simple that it can be condensed to
13768
1764a81b7a0a *** empty log message ***
nipkow
parents: 13767
diff changeset
   289
%\Tweakskip
1764a81b7a0a *** empty log message ***
nipkow
parents: 13767
diff changeset
   290
*}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   291
(*<*)lemma "xs \<noteq> [] \<Longrightarrow> rot xs = tl xs @ [hd xs]"(*>*)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   292
by (induct xs rule: rot.induct, simp_all)
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   293
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   294
(*<*)end(*>*)