src/HOL/MicroJava/DFA/Kildall.thy
changeset 33954 1bc3b688548c
child 35416 d8d7d1b785af
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/MicroJava/DFA/Kildall.thy	Tue Nov 24 14:37:23 2009 +0100
@@ -0,0 +1,495 @@
+(*  Title:      HOL/MicroJava/BV/Kildall.thy
+    Author:     Tobias Nipkow, Gerwin Klein
+    Copyright   2000 TUM
+*)
+
+header {* \isaheader{Kildall's Algorithm}\label{sec:Kildall} *}
+
+theory Kildall
+imports SemilatAlg While_Combinator
+begin
+
+
+consts
+ iter :: "'s binop \<Rightarrow> 's step_type \<Rightarrow>
+          's list \<Rightarrow> nat set \<Rightarrow> 's list \<times> nat set"
+ propa :: "'s binop \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's list \<Rightarrow> nat set \<Rightarrow> 's list * nat set"
+
+primrec
+"propa f []      ss w = (ss,w)"
+"propa f (q'#qs) ss w = (let (q,t) = q';
+                             u = t +_f ss!q;
+                             w' = (if u = ss!q then w else insert q w)
+                         in propa f qs (ss[q := u]) w')"
+
+defs iter_def:
+"iter f step ss w ==
+ while (%(ss,w). w \<noteq> {})
+       (%(ss,w). let p = SOME p. p \<in> w
+                 in propa f (step p (ss!p)) ss (w-{p}))
+       (ss,w)"
+
+constdefs
+ unstables :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> nat set"
+"unstables r step ss == {p. p < size ss \<and> \<not>stable r step ss p}"
+
+ kildall :: "'s ord \<Rightarrow> 's binop \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> 's list"
+"kildall r f step ss == fst(iter f step ss (unstables r step ss))"
+
+consts merges :: "'s binop \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's list \<Rightarrow> 's list"
+primrec
+"merges f []      ss = ss"
+"merges f (p'#ps) ss = (let (p,s) = p' in merges f ps (ss[p := s +_f ss!p]))"
+
+
+lemmas [simp] = Let_def Semilat.le_iff_plus_unchanged [OF Semilat.intro, symmetric]
+
+
+lemma (in Semilat) nth_merges:
+ "\<And>ss. \<lbrakk>p < length ss; ss \<in> list n A; \<forall>(p,t)\<in>set ps. p<n \<and> t\<in>A \<rbrakk> \<Longrightarrow>
+  (merges f ps ss)!p = map snd [(p',t') \<leftarrow> ps. p'=p] ++_f ss!p"
+  (is "\<And>ss. \<lbrakk>_; _; ?steptype ps\<rbrakk> \<Longrightarrow> ?P ss ps")
+proof (induct ps)
+  show "\<And>ss. ?P ss []" by simp
+
+  fix ss p' ps'
+  assume ss: "ss \<in> list n A"
+  assume l:  "p < length ss"
+  assume "?steptype (p'#ps')"
+  then obtain a b where
+    p': "p'=(a,b)" and ab: "a<n" "b\<in>A" and ps': "?steptype ps'"
+    by (cases p') auto
+  assume "\<And>ss. p< length ss \<Longrightarrow> ss \<in> list n A \<Longrightarrow> ?steptype ps' \<Longrightarrow> ?P ss ps'"
+  from this [OF _ _ ps'] have IH: "\<And>ss. ss \<in> list n A \<Longrightarrow> p < length ss \<Longrightarrow> ?P ss ps'" .
+
+  from ss ab
+  have "ss[a := b +_f ss!a] \<in> list n A" by (simp add: closedD)
+  moreover
+  from calculation l
+  have "p < length (ss[a := b +_f ss!a])" by simp
+  ultimately
+  have "?P (ss[a := b +_f ss!a]) ps'" by (rule IH)
+  with p' l
+  show "?P ss (p'#ps')" by simp
+qed
+
+
+(** merges **)
+
+lemma length_merges [rule_format, simp]:
+  "\<forall>ss. size(merges f ps ss) = size ss"
+  by (induct_tac ps, auto)
+
+
+lemma (in Semilat) merges_preserves_type_lemma:
+shows "\<forall>xs. xs \<in> list n A \<longrightarrow> (\<forall>(p,x) \<in> set ps. p<n \<and> x\<in>A)
+          \<longrightarrow> merges f ps xs \<in> list n A"
+apply (insert closedI)
+apply (unfold closed_def)
+apply (induct_tac ps)
+ apply simp
+apply clarsimp
+done
+
+lemma (in Semilat) merges_preserves_type [simp]:
+ "\<lbrakk> xs \<in> list n A; \<forall>(p,x) \<in> set ps. p<n \<and> x\<in>A \<rbrakk>
+  \<Longrightarrow> merges f ps xs \<in> list n A"
+by (simp add: merges_preserves_type_lemma)
+
+lemma (in Semilat) merges_incr_lemma:
+ "\<forall>xs. xs \<in> list n A \<longrightarrow> (\<forall>(p,x)\<in>set ps. p<size xs \<and> x \<in> A) \<longrightarrow> xs <=[r] merges f ps xs"
+apply (induct_tac ps)
+ apply simp
+apply simp
+apply clarify
+apply (rule order_trans)
+  apply simp
+ apply (erule list_update_incr)
+  apply simp
+ apply simp
+apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
+done
+
+lemma (in Semilat) merges_incr:
+ "\<lbrakk> xs \<in> list n A; \<forall>(p,x)\<in>set ps. p<size xs \<and> x \<in> A \<rbrakk> 
+  \<Longrightarrow> xs <=[r] merges f ps xs"
+  by (simp add: merges_incr_lemma)
+
+
+lemma (in Semilat) merges_same_conv [rule_format]:
+ "(\<forall>xs. xs \<in> list n A \<longrightarrow> (\<forall>(p,x)\<in>set ps. p<size xs \<and> x\<in>A) \<longrightarrow> 
+     (merges f ps xs = xs) = (\<forall>(p,x)\<in>set ps. x <=_r xs!p))"
+  apply (induct_tac ps)
+   apply simp
+  apply clarsimp
+  apply (rename_tac p x ps xs)
+  apply (rule iffI)
+   apply (rule context_conjI)
+    apply (subgoal_tac "xs[p := x +_f xs!p] <=[r] xs")
+     apply (drule_tac p = p in le_listD)
+      apply simp
+     apply simp
+    apply (erule subst, rule merges_incr)
+       apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
+      apply clarify
+      apply (rule conjI)
+       apply simp
+       apply (blast dest: boundedD)
+      apply blast
+   apply clarify
+   apply (erule allE)
+   apply (erule impE)
+    apply assumption
+   apply (drule bspec)
+    apply assumption
+   apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
+   apply blast
+  apply clarify 
+  apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
+  done
+
+
+lemma (in Semilat) list_update_le_listI [rule_format]:
+  "set xs <= A \<longrightarrow> set ys <= A \<longrightarrow> xs <=[r] ys \<longrightarrow> p < size xs \<longrightarrow>  
+   x <=_r ys!p \<longrightarrow> x\<in>A \<longrightarrow> xs[p := x +_f xs!p] <=[r] ys"
+  apply(insert semilat)
+  apply (unfold Listn.le_def lesub_def semilat_def)
+  apply (simp add: list_all2_conv_all_nth nth_list_update)
+  done
+
+lemma (in Semilat) merges_pres_le_ub:
+  assumes "set ts <= A" and "set ss <= A"
+    and "\<forall>(p,t)\<in>set ps. t <=_r ts!p \<and> t \<in> A \<and> p < size ts" and "ss <=[r] ts"
+  shows "merges f ps ss <=[r] ts"
+proof -
+  { fix t ts ps
+    have
+    "\<And>qs. \<lbrakk>set ts <= A; \<forall>(p,t)\<in>set ps. t <=_r ts!p \<and> t \<in> A \<and> p< size ts \<rbrakk> \<Longrightarrow>
+    set qs <= set ps  \<longrightarrow> 
+    (\<forall>ss. set ss <= A \<longrightarrow> ss <=[r] ts \<longrightarrow> merges f qs ss <=[r] ts)"
+    apply (induct_tac qs)
+     apply simp
+    apply (simp (no_asm_simp))
+    apply clarify
+    apply (rotate_tac -2)
+    apply simp
+    apply (erule allE, erule impE, erule_tac [2] mp)
+     apply (drule bspec, assumption)
+     apply (simp add: closedD)
+    apply (drule bspec, assumption)
+    apply (simp add: list_update_le_listI)
+    done 
+  } note this [dest]
+  
+  from prems show ?thesis by blast
+qed
+
+
+(** propa **)
+
+
+lemma decomp_propa:
+  "\<And>ss w. (\<forall>(q,t)\<in>set qs. q < size ss) \<Longrightarrow> 
+   propa f qs ss w = 
+   (merges f qs ss, {q. \<exists>t. (q,t)\<in>set qs \<and> t +_f ss!q \<noteq> ss!q} Un w)"
+  apply (induct qs)
+   apply simp   
+  apply (simp (no_asm))
+  apply clarify  
+  apply simp
+  apply (rule conjI) 
+   apply blast
+  apply (simp add: nth_list_update)
+  apply blast
+  done 
+
+(** iter **)
+
+lemma (in Semilat) stable_pres_lemma:
+shows "\<lbrakk>pres_type step n A; bounded step n; 
+     ss \<in> list n A; p \<in> w; \<forall>q\<in>w. q < n; 
+     \<forall>q. q < n \<longrightarrow> q \<notin> w \<longrightarrow> stable r step ss q; q < n; 
+     \<forall>s'. (q,s') \<in> set (step p (ss ! p)) \<longrightarrow> s' +_f ss ! q = ss ! q; 
+     q \<notin> w \<or> q = p \<rbrakk> 
+  \<Longrightarrow> stable r step (merges f (step p (ss!p)) ss) q"
+  apply (unfold stable_def)
+  apply (subgoal_tac "\<forall>s'. (q,s') \<in> set (step p (ss!p)) \<longrightarrow> s' : A")
+   prefer 2
+   apply clarify
+   apply (erule pres_typeD)
+    prefer 3 apply assumption
+    apply (rule listE_nth_in)
+     apply assumption
+    apply simp
+   apply simp
+  apply simp
+  apply clarify
+  apply (subst nth_merges)
+       apply simp
+       apply (blast dest: boundedD)
+      apply assumption
+     apply clarify
+     apply (rule conjI)
+      apply (blast dest: boundedD)
+     apply (erule pres_typeD)
+       prefer 3 apply assumption
+      apply simp
+     apply simp
+apply(subgoal_tac "q < length ss")
+prefer 2 apply simp
+  apply (frule nth_merges [of q _ _ "step p (ss!p)"]) (* fixme: why does method subst not work?? *)
+apply assumption
+  apply clarify
+  apply (rule conjI)
+   apply (blast dest: boundedD)
+  apply (erule pres_typeD)
+     prefer 3 apply assumption
+    apply simp
+   apply simp
+  apply (drule_tac P = "\<lambda>x. (a, b) \<in> set (step q x)" in subst)
+   apply assumption
+
+ apply (simp add: plusplus_empty)
+ apply (cases "q \<in> w")
+  apply simp
+  apply (rule ub1')
+     apply (rule semilat)
+    apply clarify
+    apply (rule pres_typeD)
+       apply assumption
+      prefer 3 apply assumption
+     apply (blast intro: listE_nth_in dest: boundedD)
+    apply (blast intro: pres_typeD dest: boundedD)
+   apply (blast intro: listE_nth_in dest: boundedD)
+  apply assumption
+
+ apply simp
+ apply (erule allE, erule impE, assumption, erule impE, assumption)
+ apply (rule order_trans)
+   apply simp
+  defer
+ apply (rule pp_ub2)(*
+    apply assumption*)
+   apply simp
+   apply clarify
+   apply simp
+   apply (rule pres_typeD)
+      apply assumption
+     prefer 3 apply assumption
+    apply (blast intro: listE_nth_in dest: boundedD)
+   apply (blast intro: pres_typeD dest: boundedD)
+  apply (blast intro: listE_nth_in dest: boundedD)
+ apply blast
+ done
+
+
+lemma (in Semilat) merges_bounded_lemma:
+ "\<lbrakk> mono r step n A; bounded step n; 
+    \<forall>(p',s') \<in> set (step p (ss!p)). s' \<in> A; ss \<in> list n A; ts \<in> list n A; p < n; 
+    ss <=[r] ts; \<forall>p. p < n \<longrightarrow> stable r step ts p \<rbrakk> 
+  \<Longrightarrow> merges f (step p (ss!p)) ss <=[r] ts" 
+  apply (unfold stable_def)
+  apply (rule merges_pres_le_ub)
+     apply simp
+    apply simp
+   prefer 2 apply assumption
+
+  apply clarsimp
+  apply (drule boundedD, assumption+)
+  apply (erule allE, erule impE, assumption)
+  apply (drule bspec, assumption)
+  apply simp
+
+  apply (drule monoD [of _ _ _ _ p "ss!p"  "ts!p"])
+     apply assumption
+    apply simp
+   apply (simp add: le_listD)
+  
+  apply (drule lesub_step_typeD, assumption) 
+  apply clarify
+  apply (drule bspec, assumption)
+  apply simp
+  apply (blast intro: order_trans)
+  done
+
+lemma termination_lemma:
+  assumes semilat: "semilat (A, r, f)"
+  shows "\<lbrakk> ss \<in> list n A; \<forall>(q,t)\<in>set qs. q<n \<and> t\<in>A; p\<in>w \<rbrakk> \<Longrightarrow> 
+  ss <[r] merges f qs ss \<or> 
+  merges f qs ss = ss \<and> {q. \<exists>t. (q,t)\<in>set qs \<and> t +_f ss!q \<noteq> ss!q} Un (w-{p}) < w" (is "PROP ?P")
+proof -
+  interpret Semilat A r f using assms by (rule Semilat.intro)
+  show "PROP ?P" apply(insert semilat)
+    apply (unfold lesssub_def)
+    apply (simp (no_asm_simp) add: merges_incr)
+    apply (rule impI)
+    apply (rule merges_same_conv [THEN iffD1, elim_format]) 
+    apply assumption+
+    defer
+    apply (rule sym, assumption)
+    defer apply simp
+    apply (subgoal_tac "\<forall>q t. \<not>((q, t) \<in> set qs \<and> t +_f ss ! q \<noteq> ss ! q)")
+    apply (blast intro!: psubsetI elim: equalityE)
+    apply clarsimp
+    apply (drule bspec, assumption) 
+    apply (drule bspec, assumption)
+    apply clarsimp
+    done
+qed
+
+lemma iter_properties[rule_format]:
+  assumes semilat: "semilat (A, r, f)"
+  shows "\<lbrakk> acc r ; pres_type step n A; mono r step n A;
+     bounded step n; \<forall>p\<in>w0. p < n; ss0 \<in> list n A;
+     \<forall>p<n. p \<notin> w0 \<longrightarrow> stable r step ss0 p \<rbrakk> \<Longrightarrow>
+   iter f step ss0 w0 = (ss',w')
+   \<longrightarrow>
+   ss' \<in> list n A \<and> stables r step ss' \<and> ss0 <=[r] ss' \<and>
+   (\<forall>ts\<in>list n A. ss0 <=[r] ts \<and> stables r step ts \<longrightarrow> ss' <=[r] ts)"
+  (is "PROP ?P")
+proof -
+  interpret Semilat A r f using assms by (rule Semilat.intro)
+  show "PROP ?P" apply(insert semilat)
+apply (unfold iter_def stables_def)
+apply (rule_tac P = "%(ss,w).
+ ss \<in> list n A \<and> (\<forall>p<n. p \<notin> w \<longrightarrow> stable r step ss p) \<and> ss0 <=[r] ss \<and>
+ (\<forall>ts\<in>list n A. ss0 <=[r] ts \<and> stables r step ts \<longrightarrow> ss <=[r] ts) \<and>
+ (\<forall>p\<in>w. p < n)" and
+ r = "{(ss',ss) . ss <[r] ss'} <*lex*> finite_psubset"
+       in while_rule)
+
+-- "Invariant holds initially:"
+apply (simp add:stables_def)
+
+-- "Invariant is preserved:"
+apply(simp add: stables_def split_paired_all)
+apply(rename_tac ss w)
+apply(subgoal_tac "(SOME p. p \<in> w) \<in> w")
+ prefer 2; apply (fast intro: someI)
+apply(subgoal_tac "\<forall>(q,t) \<in> set (step (SOME p. p \<in> w) (ss ! (SOME p. p \<in> w))). q < length ss \<and> t \<in> A")
+ prefer 2
+ apply clarify
+ apply (rule conjI)
+  apply(clarsimp, blast dest!: boundedD)
+ apply (erule pres_typeD)
+  prefer 3
+  apply assumption
+  apply (erule listE_nth_in)
+  apply simp
+ apply simp
+apply (subst decomp_propa)
+ apply fast
+apply simp
+apply (rule conjI)
+ apply (rule merges_preserves_type)
+ apply blast
+ apply clarify
+ apply (rule conjI)
+  apply(clarsimp, fast dest!: boundedD)
+ apply (erule pres_typeD)
+  prefer 3
+  apply assumption
+  apply (erule listE_nth_in)
+  apply blast
+ apply blast
+apply (rule conjI)
+ apply clarify
+ apply (blast intro!: stable_pres_lemma)
+apply (rule conjI)
+ apply (blast intro!: merges_incr intro: le_list_trans)
+apply (rule conjI)
+ apply clarsimp
+ apply (blast intro!: merges_bounded_lemma)
+apply (blast dest!: boundedD)
+
+
+-- "Postcondition holds upon termination:"
+apply(clarsimp simp add: stables_def split_paired_all)
+
+-- "Well-foundedness of the termination relation:"
+apply (rule wf_lex_prod)
+ apply (insert orderI [THEN acc_le_listI])
+ apply (simp add: acc_def lesssub_def wfP_wf_eq [symmetric])
+apply (rule wf_finite_psubset) 
+
+-- "Loop decreases along termination relation:"
+apply(simp add: stables_def split_paired_all)
+apply(rename_tac ss w)
+apply(subgoal_tac "(SOME p. p \<in> w) \<in> w")
+ prefer 2; apply (fast intro: someI)
+apply(subgoal_tac "\<forall>(q,t) \<in> set (step (SOME p. p \<in> w) (ss ! (SOME p. p \<in> w))). q < length ss \<and> t \<in> A")
+ prefer 2
+ apply clarify
+ apply (rule conjI)
+  apply(clarsimp, blast dest!: boundedD)
+ apply (erule pres_typeD)
+  prefer 3
+  apply assumption
+  apply (erule listE_nth_in)
+  apply blast
+ apply blast
+apply (subst decomp_propa)
+ apply blast
+apply clarify
+apply (simp del: listE_length
+    add: lex_prod_def finite_psubset_def 
+         bounded_nat_set_is_finite)
+apply (rule termination_lemma)
+apply assumption+
+defer
+apply assumption
+apply clarsimp
+done
+
+qed
+
+lemma kildall_properties:
+assumes semilat: "semilat (A, r, f)"
+shows "\<lbrakk> acc r; pres_type step n A; mono r step n A;
+     bounded step n; ss0 \<in> list n A \<rbrakk> \<Longrightarrow>
+  kildall r f step ss0 \<in> list n A \<and>
+  stables r step (kildall r f step ss0) \<and>
+  ss0 <=[r] kildall r f step ss0 \<and>
+  (\<forall>ts\<in>list n A. ss0 <=[r] ts \<and> stables r step ts \<longrightarrow>
+                 kildall r f step ss0 <=[r] ts)"
+  (is "PROP ?P")
+proof -
+  interpret Semilat A r f using assms by (rule Semilat.intro)
+  show "PROP ?P"
+apply (unfold kildall_def)
+apply(case_tac "iter f step ss0 (unstables r step ss0)")
+apply(simp)
+apply (rule iter_properties)
+apply (simp_all add: unstables_def stable_def)
+apply (rule semilat)
+done
+qed
+
+lemma is_bcv_kildall:
+assumes semilat: "semilat (A, r, f)"
+shows "\<lbrakk> acc r; top r T; pres_type step n A; bounded step n; mono r step n A \<rbrakk>
+  \<Longrightarrow> is_bcv r T step n A (kildall r f step)"
+  (is "PROP ?P")
+proof -
+  interpret Semilat A r f using assms by (rule Semilat.intro)
+  show "PROP ?P"
+apply(unfold is_bcv_def wt_step_def)
+apply(insert semilat kildall_properties[of A])
+apply(simp add:stables_def)
+apply clarify
+apply(subgoal_tac "kildall r f step ss \<in> list n A")
+ prefer 2 apply (simp(no_asm_simp))
+apply (rule iffI)
+ apply (rule_tac x = "kildall r f step ss" in bexI) 
+  apply (rule conjI)
+   apply (blast)
+  apply (simp  (no_asm_simp))
+ apply(assumption)
+apply clarify
+apply(subgoal_tac "kildall r f step ss!p <=_r ts!p")
+ apply simp
+apply (blast intro!: le_listD less_lengthI)
+done
+qed
+
+end