doc-src/TutorialI/Recdef/document/Induction.tex
changeset 17175 1eced27ee0e1
parent 17056 05fc32a23b8b
child 17181 5f42dd5e6570
--- a/doc-src/TutorialI/Recdef/document/Induction.tex	Sun Aug 28 19:42:10 2005 +0200
+++ b/doc-src/TutorialI/Recdef/document/Induction.tex	Sun Aug 28 19:42:19 2005 +0200
@@ -7,6 +7,7 @@
 \endisadelimtheory
 %
 \isatagtheory
+\isamarkupfalse%
 %
 \endisatagtheory
 {\isafoldtheory}%
@@ -14,7 +15,6 @@
 \isadelimtheory
 %
 \endisadelimtheory
-\isamarkuptrue%
 %
 \begin{isamarkuptext}%
 Assuming we have defined our function such that Isabelle could prove
@@ -32,14 +32,14 @@
 for all recursive calls on the right-hand side. Here is a simple example
 involving the predefined \isa{map} functional on lists:%
 \end{isamarkuptext}%
-\isamarkupfalse%
-\isacommand{lemma}\ {\isachardoublequote}map\ f\ {\isacharparenleft}sep{\isacharparenleft}x{\isacharcomma}xs{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep{\isacharparenleft}f\ x{\isacharcomma}\ map\ f\ xs{\isacharparenright}{\isachardoublequote}%
+\isamarkuptrue%
+\isacommand{lemma}\isamarkupfalse%
+\ {\isachardoublequoteopen}map\ f\ {\isacharparenleft}sep{\isacharparenleft}x{\isacharcomma}xs{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep{\isacharparenleft}f\ x{\isacharcomma}\ map\ f\ xs{\isacharparenright}{\isachardoublequoteclose}%
 \isadelimproof
 %
 \endisadelimproof
 %
 \isatagproof
-\isamarkuptrue%
 %
 \begin{isamarkuptxt}%
 \noindent
@@ -47,9 +47,9 @@
 is the result of applying \isa{f} to all elements of \isa{xs}. We prove
 this lemma by recursion induction over \isa{sep}:%
 \end{isamarkuptxt}%
-\isamarkupfalse%
-\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ x\ xs\ rule{\isacharcolon}\ sep{\isachardot}induct{\isacharparenright}\isamarkuptrue%
-%
+\isamarkuptrue%
+\isacommand{apply}\isamarkupfalse%
+{\isacharparenleft}induct{\isacharunderscore}tac\ x\ xs\ rule{\isacharcolon}\ sep{\isachardot}induct{\isacharparenright}%
 \begin{isamarkuptxt}%
 \noindent
 The resulting proof state has three subgoals corresponding to the three
@@ -63,17 +63,17 @@
 \end{isabelle}
 The rest is pure simplification:%
 \end{isamarkuptxt}%
-\isamarkupfalse%
-\isacommand{apply}\ simp{\isacharunderscore}all\isanewline
-\isamarkupfalse%
-\isacommand{done}%
+\isamarkuptrue%
+\isacommand{apply}\isamarkupfalse%
+\ simp{\isacharunderscore}all\isanewline
+\isacommand{done}\isamarkupfalse%
+%
 \endisatagproof
 {\isafoldproof}%
 %
 \isadelimproof
 %
 \endisadelimproof
-\isamarkuptrue%
 %
 \begin{isamarkuptext}%
 Try proving the above lemma by structural induction, and you find that you
@@ -101,12 +101,14 @@
 The final case has an induction hypothesis:  you may assume that \isa{P}
 holds for the tail of that list.%
 \end{isamarkuptext}%
+\isamarkuptrue%
 %
 \isadelimtheory
 %
 \endisadelimtheory
 %
 \isatagtheory
+\isamarkupfalse%
 %
 \endisatagtheory
 {\isafoldtheory}%