src/HOL/Library/Code_Abstract_Nat.thy
changeset 51113 222fb6cb2c3e
child 55415 05f5fdb8d093
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Code_Abstract_Nat.thy	Thu Feb 14 12:24:56 2013 +0100
@@ -0,0 +1,113 @@
+(*  Title:      HOL/Library/Code_Abstract_Nat.thy
+    Author:     Stefan Berghofer, Florian Haftmann, TU Muenchen
+*)
+
+header {* Avoidance of pattern matching on natural numbers *}
+
+theory Code_Abstract_Nat
+imports Main
+begin
+
+text {*
+  When natural numbers are implemented in another than the
+  conventional inductive @{term "0::nat"}/@{term Suc} representation,
+  it is necessary to avoid all pattern matching on natural numbers
+  altogether.  This is accomplished by this theory (up to a certain
+  extent).
+*}
+
+subsection {* Case analysis *}
+
+text {*
+  Case analysis on natural numbers is rephrased using a conditional
+  expression:
+*}
+
+lemma [code, code_unfold]:
+  "nat_case = (\<lambda>f g n. if n = 0 then f else g (n - 1))"
+  by (auto simp add: fun_eq_iff dest!: gr0_implies_Suc)
+
+
+subsection {* Preprocessors *}
+
+text {*
+  The term @{term "Suc n"} is no longer a valid pattern.  Therefore,
+  all occurrences of this term in a position where a pattern is
+  expected (i.e.~on the left-hand side of a code equation) must be
+  eliminated.  This can be accomplished – as far as possible – by
+  applying the following transformation rule:
+*}
+
+lemma Suc_if_eq: "(\<And>n. f (Suc n) \<equiv> h n) \<Longrightarrow> f 0 \<equiv> g \<Longrightarrow>
+  f n \<equiv> if n = 0 then g else h (n - 1)"
+  by (rule eq_reflection) (cases n, simp_all)
+
+text {*
+  The rule above is built into a preprocessor that is plugged into
+  the code generator.
+*}
+
+setup {*
+let
+
+fun remove_suc thy thms =
+  let
+    val vname = singleton (Name.variant_list (map fst
+      (fold (Term.add_var_names o Thm.full_prop_of) thms []))) "n";
+    val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT));
+    fun lhs_of th = snd (Thm.dest_comb
+      (fst (Thm.dest_comb (cprop_of th))));
+    fun rhs_of th = snd (Thm.dest_comb (cprop_of th));
+    fun find_vars ct = (case term_of ct of
+        (Const (@{const_name Suc}, _) $ Var _) => [(cv, snd (Thm.dest_comb ct))]
+      | _ $ _ =>
+        let val (ct1, ct2) = Thm.dest_comb ct
+        in 
+          map (apfst (fn ct => Thm.apply ct ct2)) (find_vars ct1) @
+          map (apfst (Thm.apply ct1)) (find_vars ct2)
+        end
+      | _ => []);
+    val eqs = maps
+      (fn th => map (pair th) (find_vars (lhs_of th))) thms;
+    fun mk_thms (th, (ct, cv')) =
+      let
+        val th' =
+          Thm.implies_elim
+           (Conv.fconv_rule (Thm.beta_conversion true)
+             (Drule.instantiate'
+               [SOME (ctyp_of_term ct)] [SOME (Thm.lambda cv ct),
+                 SOME (Thm.lambda cv' (rhs_of th)), NONE, SOME cv']
+               @{thm Suc_if_eq})) (Thm.forall_intr cv' th)
+      in
+        case map_filter (fn th'' =>
+            SOME (th'', singleton
+              (Variable.trade (K (fn [th'''] => [th''' RS th']))
+                (Variable.global_thm_context th'')) th'')
+          handle THM _ => NONE) thms of
+            [] => NONE
+          | thps =>
+              let val (ths1, ths2) = split_list thps
+              in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end
+      end
+  in get_first mk_thms eqs end;
+
+fun eqn_suc_base_preproc thy thms =
+  let
+    val dest = fst o Logic.dest_equals o prop_of;
+    val contains_suc = exists_Const (fn (c, _) => c = @{const_name Suc});
+  in
+    if forall (can dest) thms andalso exists (contains_suc o dest) thms
+      then thms |> perhaps_loop (remove_suc thy) |> (Option.map o map) Drule.zero_var_indexes
+       else NONE
+  end;
+
+val eqn_suc_preproc = Code_Preproc.simple_functrans eqn_suc_base_preproc;
+
+in
+
+  Code_Preproc.add_functrans ("eqn_Suc", eqn_suc_preproc)
+
+end;
+*}
+
+end