--- a/src/HOL/Analysis/Set_Integral.thy Wed Jun 06 13:04:52 2018 +0200
+++ b/src/HOL/Analysis/Set_Integral.thy Wed Jun 06 18:19:55 2018 +0200
@@ -869,7 +869,7 @@
2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)" by simp
have le: "ennreal (norm (F n x - f x)) \<le> ennreal (norm (f x)) + ennreal (norm (F n x))" for n x
- by (simp add: norm_minus_commute norm_triangle_ineq4 ennreal_minus reorient: ennreal_plus)
+ by (simp add: norm_minus_commute norm_triangle_ineq4 ennreal_minus flip: ennreal_plus)
then have le2: "(\<integral>\<^sup>+ x. ennreal (norm (F n x - f x)) \<partial>M) \<le> (\<integral>\<^sup>+ x. ennreal (norm (f x)) + ennreal (norm (F n x)) \<partial>M)" for n
by (rule nn_integral_mono)
@@ -882,7 +882,7 @@
proof (intro arg_cong[where f=liminf] ext)
fix n
have "\<And>x. ennreal(G n x) = ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x))"
- unfolding G_def by (simp add: ennreal_minus reorient: ennreal_plus)
+ unfolding G_def by (simp add: ennreal_minus flip: ennreal_plus)
moreover have "(\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x)) \<partial>M)
= (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)"
proof (rule nn_integral_diff)