--- a/src/Doc/Tutorial/Protocol/Message.thy Thu Jan 11 13:48:17 2018 +0100
+++ b/src/Doc/Tutorial/Protocol/Message.thy Fri Jan 12 14:08:53 2018 +0100
@@ -5,7 +5,7 @@
Inductive relations "parts", "analz" and "synth"
*)(*<*)
-section{*Theory of Agents and Messages for Security Protocols*}
+section\<open>Theory of Agents and Messages for Security Protocols\<close>
theory Message imports Main begin
ML_file "../../antiquote_setup.ML"
@@ -15,27 +15,27 @@
by blast
(*>*)
-section{* Agents and Messages *}
+section\<open>Agents and Messages\<close>
-text {*
+text \<open>
All protocol specifications refer to a syntactic theory of messages.
Datatype
@{text agent} introduces the constant @{text Server} (a trusted central
machine, needed for some protocols), an infinite population of
friendly agents, and the~@{text Spy}:
-*}
+\<close>
datatype agent = Server | Friend nat | Spy
-text {*
+text \<open>
Keys are just natural numbers. Function @{text invKey} maps a public key to
the matching private key, and vice versa:
-*}
+\<close>
type_synonym key = nat
consts invKey :: "key \<Rightarrow> key"
(*<*)
-consts all_symmetric :: bool --{*true if all keys are symmetric*}
+consts all_symmetric :: bool \<comment>\<open>true if all keys are symmetric\<close>
specification (invKey)
invKey [simp]: "invKey (invKey K) = K"
@@ -43,18 +43,18 @@
by (rule exI [of _ id], auto)
-text{*The inverse of a symmetric key is itself; that of a public key
- is the private key and vice versa*}
+text\<open>The inverse of a symmetric key is itself; that of a public key
+ is the private key and vice versa\<close>
definition symKeys :: "key set" where
"symKeys == {K. invKey K = K}"
(*>*)
-text {*
+text \<open>
Datatype
@{text msg} introduces the message forms, which include agent names, nonces,
keys, compound messages, and encryptions.
-*}
+\<close>
datatype
msg = Agent agent
@@ -63,7 +63,7 @@
| MPair msg msg
| Crypt key msg
-text {*
+text \<open>
\noindent
The notation $\comp{X\sb 1,\ldots X\sb{n-1},X\sb n}$
abbreviates
@@ -76,10 +76,10 @@
wrong key succeeds but yields garbage. Our model of encryption is
realistic if encryption adds some redundancy to the plaintext, such as a
checksum, so that garbage can be detected.
-*}
+\<close>
(*<*)
-text{*Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...*}
+text\<open>Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...\<close>
syntax
"_MTuple" :: "['a, args] => 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)")
translations
@@ -88,11 +88,11 @@
definition keysFor :: "msg set => key set" where
- --{*Keys useful to decrypt elements of a message set*}
+ \<comment>\<open>Keys useful to decrypt elements of a message set\<close>
"keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
-subsubsection{*Inductive Definition of All Parts" of a Message*}
+subsubsection\<open>Inductive Definition of All Parts" of a Message\<close>
inductive_set
parts :: "msg set => msg set"
@@ -104,7 +104,7 @@
| Body: "Crypt K X \<in> parts H ==> X \<in> parts H"
-text{*Monotonicity*}
+text\<open>Monotonicity\<close>
lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)"
apply auto
apply (erule parts.induct)
@@ -112,7 +112,7 @@
done
-text{*Equations hold because constructors are injective.*}
+text\<open>Equations hold because constructors are injective.\<close>
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)"
by auto
@@ -123,7 +123,7 @@
by auto
-subsubsection{*Inverse of keys *}
+subsubsection\<open>Inverse of keys\<close>
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"
apply safe
@@ -131,7 +131,7 @@
done
-subsection{*keysFor operator*}
+subsection\<open>keysFor operator\<close>
lemma keysFor_empty [simp]: "keysFor {} = {}"
by (unfold keysFor_def, blast)
@@ -142,7 +142,7 @@
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"
by (unfold keysFor_def, blast)
-text{*Monotonicity*}
+text\<open>Monotonicity\<close>
lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)"
by (unfold keysFor_def, blast)
@@ -169,7 +169,7 @@
by (unfold keysFor_def, blast)
-subsection{*Inductive relation "parts"*}
+subsection\<open>Inductive relation "parts"\<close>
lemma MPair_parts:
"[| \<lbrace>X,Y\<rbrace> \<in> parts H;
@@ -177,10 +177,10 @@
by (blast dest: parts.Fst parts.Snd)
declare MPair_parts [elim!] parts.Body [dest!]
-text{*NB These two rules are UNSAFE in the formal sense, as they discard the
+text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the
compound message. They work well on THIS FILE.
@{text MPair_parts} is left as SAFE because it speeds up proofs.
- The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*}
+ The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close>
lemma parts_increasing: "H \<subseteq> parts(H)"
by blast
@@ -195,12 +195,12 @@
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
by simp
-text{*WARNING: loops if H = {Y}, therefore must not be repeated!*}
+text\<open>WARNING: loops if H = {Y}, therefore must not be repeated!\<close>
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
by (erule parts.induct, fast+)
-subsubsection{*Unions *}
+subsubsection\<open>Unions\<close>
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"
by (intro Un_least parts_mono Un_upper1 Un_upper2)
@@ -218,8 +218,8 @@
apply (simp only: parts_Un)
done
-text{*TWO inserts to avoid looping. This rewrite is better than nothing.
- Not suitable for Addsimps: its behaviour can be strange.*}
+text\<open>TWO inserts to avoid looping. This rewrite is better than nothing.
+ Not suitable for Addsimps: its behaviour can be strange.\<close>
lemma parts_insert2:
"parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
apply (simp add: Un_assoc)
@@ -237,12 +237,12 @@
lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"
by (intro equalityI parts_UN_subset1 parts_UN_subset2)
-text{*Added to simplify arguments to parts, analz and synth.
- NOTE: the UN versions are no longer used!*}
+text\<open>Added to simplify arguments to parts, analz and synth.
+ NOTE: the UN versions are no longer used!\<close>
-text{*This allows @{text blast} to simplify occurrences of
- @{term "parts(G\<union>H)"} in the assumption.*}
+text\<open>This allows @{text blast} to simplify occurrences of
+ @{term "parts(G\<union>H)"} in the assumption.\<close>
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE]
declare in_parts_UnE [elim!]
@@ -250,7 +250,7 @@
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"
by (blast intro: parts_mono [THEN [2] rev_subsetD])
-subsubsection{*Idempotence and transitivity *}
+subsubsection\<open>Idempotence and transitivity\<close>
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"
by (erule parts.induct, blast+)
@@ -267,7 +267,7 @@
lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H"
by (drule parts_mono, blast)
-text{*Cut*}
+text\<open>Cut\<close>
lemma parts_cut:
"[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)"
by (blast intro: parts_trans)
@@ -277,7 +277,7 @@
by (force dest!: parts_cut intro: parts_insertI)
-subsubsection{*Rewrite rules for pulling out atomic messages *}
+subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]
@@ -323,21 +323,21 @@
done
-text{*In any message, there is an upper bound N on its greatest nonce.*}
+text\<open>In any message, there is an upper bound N on its greatest nonce.\<close>
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
apply (induct_tac "msg")
apply (simp_all (no_asm_simp) add: exI parts_insert2)
- txt{*MPair case: blast works out the necessary sum itself!*}
+ txt\<open>MPair case: blast works out the necessary sum itself!\<close>
prefer 2 apply auto apply (blast elim!: add_leE)
-txt{*Nonce case*}
+txt\<open>Nonce case\<close>
apply (rename_tac nat)
apply (rule_tac x = "N + Suc nat" in exI, auto)
done
(*>*)
-section{* Modelling the Adversary *}
+section\<open>Modelling the Adversary\<close>
-text {*
+text \<open>
The spy is part of the system and must be built into the model. He is
a malicious user who does not have to follow the protocol. He
watches the network and uses any keys he knows to decrypt messages.
@@ -349,7 +349,7 @@
messages. The set @{text "analz H"} formalizes what the adversary can learn
from the set of messages~$H$. The closure properties of this set are
defined inductively.
-*}
+\<close>
inductive_set
analz :: "msg set \<Rightarrow> msg set"
@@ -362,14 +362,14 @@
"\<lbrakk>Crypt K X \<in> analz H; Key(invKey K) \<in> analz H\<rbrakk>
\<Longrightarrow> X \<in> analz H"
(*<*)
-text{*Monotonicity; Lemma 1 of Lowe's paper*}
+text\<open>Monotonicity; Lemma 1 of Lowe's paper\<close>
lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)"
apply auto
apply (erule analz.induct)
apply (auto dest: analz.Fst analz.Snd)
done
-text{*Making it safe speeds up proofs*}
+text\<open>Making it safe speeds up proofs\<close>
lemma MPair_analz [elim!]:
"[| \<lbrace>X,Y\<rbrace> \<in> analz H;
[| X \<in> analz H; Y \<in> analz H |] ==> P
@@ -402,22 +402,22 @@
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD]
-subsubsection{*General equational properties *}
+subsubsection\<open>General equational properties\<close>
lemma analz_empty [simp]: "analz{} = {}"
apply safe
apply (erule analz.induct, blast+)
done
-text{*Converse fails: we can analz more from the union than from the
- separate parts, as a key in one might decrypt a message in the other*}
+text\<open>Converse fails: we can analz more from the union than from the
+ separate parts, as a key in one might decrypt a message in the other\<close>
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"
by (intro Un_least analz_mono Un_upper1 Un_upper2)
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])
-subsubsection{*Rewrite rules for pulling out atomic messages *}
+subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]
@@ -433,7 +433,7 @@
apply (erule analz.induct, auto)
done
-text{*Can only pull out Keys if they are not needed to decrypt the rest*}
+text\<open>Can only pull out Keys if they are not needed to decrypt the rest\<close>
lemma analz_insert_Key [simp]:
"K \<notin> keysFor (analz H) ==>
analz (insert (Key K) H) = insert (Key K) (analz H)"
@@ -452,7 +452,7 @@
apply (blast intro: analz.Fst analz.Snd)+
done
-text{*Can pull out enCrypted message if the Key is not known*}
+text\<open>Can pull out enCrypted message if the Key is not known\<close>
lemma analz_insert_Crypt:
"Key (invKey K) \<notin> analz H
==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
@@ -482,10 +482,10 @@
insert (Crypt K X) (analz (insert X H))"
by (intro equalityI lemma1 lemma2)
-text{*Case analysis: either the message is secure, or it is not! Effective,
+text\<open>Case analysis: either the message is secure, or it is not! Effective,
but can cause subgoals to blow up! Use with @{text "if_split"}; apparently
@{text "split_tac"} does not cope with patterns such as @{term"analz (insert
-(Crypt K X) H)"} *}
+(Crypt K X) H)"}\<close>
lemma analz_Crypt_if [simp]:
"analz (insert (Crypt K X) H) =
(if (Key (invKey K) \<in> analz H)
@@ -494,7 +494,7 @@
by (simp add: analz_insert_Crypt analz_insert_Decrypt)
-text{*This rule supposes "for the sake of argument" that we have the key.*}
+text\<open>This rule supposes "for the sake of argument" that we have the key.\<close>
lemma analz_insert_Crypt_subset:
"analz (insert (Crypt K X) H) \<subseteq>
insert (Crypt K X) (analz (insert X H))"
@@ -509,7 +509,7 @@
done
-subsubsection{*Idempotence and transitivity *}
+subsubsection\<open>Idempotence and transitivity\<close>
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"
by (erule analz.induct, blast+)
@@ -526,7 +526,7 @@
lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H"
by (drule analz_mono, blast)
-text{*Cut; Lemma 2 of Lowe*}
+text\<open>Cut; Lemma 2 of Lowe\<close>
lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H"
by (erule analz_trans, blast)
@@ -534,14 +534,14 @@
"Y: analz (insert X H) ==> X: analz H --> Y: analz H"
*)
-text{*This rewrite rule helps in the simplification of messages that involve
+text\<open>This rewrite rule helps in the simplification of messages that involve
the forwarding of unknown components (X). Without it, removing occurrences
- of X can be very complicated. *}
+ of X can be very complicated.\<close>
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"
by (blast intro: analz_cut analz_insertI)
-text{*A congruence rule for "analz" *}
+text\<open>A congruence rule for "analz"\<close>
lemma analz_subset_cong:
"[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |]
@@ -559,14 +559,14 @@
"analz H = analz H' ==> analz(insert X H) = analz(insert X H')"
by (force simp only: insert_def intro!: analz_cong)
-text{*If there are no pairs or encryptions then analz does nothing*}
+text\<open>If there are no pairs or encryptions then analz does nothing\<close>
lemma analz_trivial:
"[| \<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
apply safe
apply (erule analz.induct, blast+)
done
-text{*These two are obsolete (with a single Spy) but cost little to prove...*}
+text\<open>These two are obsolete (with a single Spy) but cost little to prove...\<close>
lemma analz_UN_analz_lemma:
"X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"
apply (erule analz.induct)
@@ -576,7 +576,7 @@
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])
(*>*)
-text {*
+text \<open>
Note the @{text Decrypt} rule: the spy can decrypt a
message encrypted with key~$K$ if he has the matching key,~$K^{-1}$.
Properties proved by rule induction include the following:
@@ -585,7 +585,7 @@
The set of fake messages that an intruder could invent
starting from~@{text H} is @{text "synth(analz H)"}, where @{text "synth H"}
formalizes what the adversary can build from the set of messages~$H$.
-*}
+\<close>
inductive_set
synth :: "msg set \<Rightarrow> msg set"
@@ -618,7 +618,7 @@
apply (simp (no_asm_use))
done
(*>*)
-text {*
+text \<open>
The set includes all agent names. Nonces and keys are assumed to be
unguessable, so none are included beyond those already in~$H$. Two
elements of @{term "synth H"} can be combined, and an element can be encrypted
@@ -629,11 +629,11 @@
@{named_thms [display,indent=0] analz_synth [no_vars] (analz_synth)}
Rule inversion plays a major role in reasoning about @{text synth}, through
declarations such as this one:
-*}
+\<close>
inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"
-text {*
+text \<open>
\noindent
The resulting elimination rule replaces every assumption of the form
@{term "Nonce n \<in> synth H"} by @{term "Nonce n \<in> H"},
@@ -651,22 +651,22 @@
use @{text parts} to express general well-formedness properties of a protocol,
for example, that an uncompromised agent's private key will never be
included as a component of any message.
-*}
+\<close>
(*<*)
lemma synth_increasing: "H \<subseteq> synth(H)"
by blast
-subsubsection{*Unions *}
+subsubsection\<open>Unions\<close>
-text{*Converse fails: we can synth more from the union than from the
- separate parts, building a compound message using elements of each.*}
+text\<open>Converse fails: we can synth more from the union than from the
+ separate parts, building a compound message using elements of each.\<close>
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"
by (intro Un_least synth_mono Un_upper1 Un_upper2)
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"
by (blast intro: synth_mono [THEN [2] rev_subsetD])
-subsubsection{*Idempotence and transitivity *}
+subsubsection\<open>Idempotence and transitivity\<close>
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"
by (erule synth.induct, blast+)
@@ -683,7 +683,7 @@
lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H"
by (drule synth_mono, blast)
-text{*Cut; Lemma 2 of Lowe*}
+text\<open>Cut; Lemma 2 of Lowe\<close>
lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H"
by (erule synth_trans, blast)
@@ -706,7 +706,7 @@
by (unfold keysFor_def, blast)
-subsubsection{*Combinations of parts, analz and synth *}
+subsubsection\<open>Combinations of parts, analz and synth\<close>
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"
apply (rule equalityI)
@@ -722,13 +722,13 @@
done
-subsubsection{*For reasoning about the Fake rule in traces *}
+subsubsection\<open>For reasoning about the Fake rule in traces\<close>
lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"
by (rule subset_trans [OF parts_mono parts_Un_subset2], blast)
-text{*More specifically for Fake. Very occasionally we could do with a version
- of the form @{term"parts{X} \<subseteq> synth (analz H) \<union> parts H"} *}
+text\<open>More specifically for Fake. Very occasionally we could do with a version
+ of the form @{term"parts{X} \<subseteq> synth (analz H) \<union> parts H"}\<close>
lemma Fake_parts_insert:
"X \<in> synth (analz H) ==>
parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
@@ -742,8 +742,8 @@
==> Z \<in> synth (analz H) \<union> parts H"
by (blast dest: Fake_parts_insert [THEN subsetD, dest])
-text{*@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put
- @{term "G=H"}.*}
+text\<open>@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put
+ @{term "G=H"}.\<close>
lemma Fake_analz_insert:
"X\<in> synth (analz G) ==>
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
@@ -762,8 +762,8 @@
"(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)"
by (blast intro: analz_subset_parts [THEN subsetD])
-text{*Without this equation, other rules for synth and analz would yield
- redundant cases*}
+text\<open>Without this equation, other rules for synth and analz would yield
+ redundant cases\<close>
lemma MPair_synth_analz [iff]:
"(\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) =
(X \<in> synth (analz H) & Y \<in> synth (analz H))"
@@ -775,12 +775,12 @@
by blast
-text{*We do NOT want Crypt... messages broken up in protocols!!*}
+text\<open>We do NOT want Crypt... messages broken up in protocols!!\<close>
declare parts.Body [rule del]
-text{*Rewrites to push in Key and Crypt messages, so that other messages can
- be pulled out using the @{text analz_insert} rules*}
+text\<open>Rewrites to push in Key and Crypt messages, so that other messages can
+ be pulled out using the @{text analz_insert} rules\<close>
lemmas pushKeys =
insert_commute [of "Key K" "Agent C"]
@@ -800,14 +800,14 @@
insert_commute [of "Crypt X K" "MPair X' Y"]
for X K C N X' Y
-text{*Cannot be added with @{text "[simp]"} -- messages should not always be
- re-ordered. *}
+text\<open>Cannot be added with @{text "[simp]"} -- messages should not always be
+ re-ordered.\<close>
lemmas pushes = pushKeys pushCrypts
-subsection{*Tactics useful for many protocol proofs*}
+subsection\<open>Tactics useful for many protocol proofs\<close>
ML
-{*
+\<open>
val invKey = @{thm invKey};
val keysFor_def = @{thm keysFor_def};
val symKeys_def = @{thm symKeys_def};
@@ -858,11 +858,11 @@
simp_tac ctxt 1,
REPEAT (FIRSTGOAL (resolve_tac ctxt [allI,impI,notI,conjI,iffI])),
DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i);
-*}
+\<close>
-text{*By default only @{text o_apply} is built-in. But in the presence of
+text\<open>By default only @{text o_apply} is built-in. But in the presence of
eta-expansion this means that some terms displayed as @{term "f o g"} will be
-rewritten, and others will not!*}
+rewritten, and others will not!\<close>
declare o_def [simp]
@@ -883,7 +883,7 @@
apply (rule synth_analz_mono, blast)
done
-text{*Two generalizations of @{text analz_insert_eq}*}
+text\<open>Two generalizations of @{text analz_insert_eq}\<close>
lemma gen_analz_insert_eq [rule_format]:
"X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G"
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD])
@@ -904,16 +904,16 @@
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]
-method_setup spy_analz = {*
- Scan.succeed (SIMPLE_METHOD' o spy_analz_tac) *}
+method_setup spy_analz = \<open>
+ Scan.succeed (SIMPLE_METHOD' o spy_analz_tac)\<close>
"for proving the Fake case when analz is involved"
-method_setup atomic_spy_analz = {*
- Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac) *}
+method_setup atomic_spy_analz = \<open>
+ Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac)\<close>
"for debugging spy_analz"
-method_setup Fake_insert_simp = {*
- Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac) *}
+method_setup Fake_insert_simp = \<open>
+ Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac)\<close>
"for debugging spy_analz"