--- a/src/HOL/ex/Primrec.thy	Thu Feb 01 20:48:58 2001 +0100
+++ b/src/HOL/ex/Primrec.thy	Thu Feb 01 20:51:13 2001 +0100
@@ -1,72 +1,348 @@
-(*  Title:      HOL/ex/Primrec
+(*  Title:      HOL/ex/Primrec.thy
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1997  University of Cambridge
 
-Primitive Recursive Functions
-
-Proof adopted from
-Nora Szasz, 
-A Machine Checked Proof that Ackermann's Function is not Primitive Recursive,
-In: Huet & Plotkin, eds., Logical Environments (CUP, 1993), 317-338.
-
-See also E. Mendelson, Introduction to Mathematical Logic.
-(Van Nostrand, 1964), page 250, exercise 11.
-
-Demonstrates recursive definitions, the TFL package
+Primitive Recursive Functions.  Demonstrates recursive definitions,
+the TFL package.
 *)
 
-Primrec = Main +
+header {* Primitive Recursive Functions *}
+
+theory Primrec = Main:
+
+text {*
+  Proof adopted from
+
+  Nora Szasz, A Machine Checked Proof that Ackermann's Function is not
+  Primitive Recursive, In: Huet \& Plotkin, eds., Logical Environments
+  (CUP, 1993), 317-338.
+
+  See also E. Mendelson, Introduction to Mathematical Logic.  (Van
+  Nostrand, 1964), page 250, exercise 11.
+  \medskip
+*}
+
+consts ack :: "nat * nat => nat"
+recdef ack  "less_than <*lex*> less_than"
+  "ack (0, n) =  Suc n"
+  "ack (Suc m, 0) = ack (m, 1)"
+  "ack (Suc m, Suc n) = ack (m, ack (Suc m, n))"
+
+consts list_add :: "nat list => nat"
+primrec
+  "list_add [] = 0"
+  "list_add (m # ms) = m + list_add ms"
+
+consts zeroHd :: "nat list => nat"
+primrec
+  "zeroHd [] = 0"
+  "zeroHd (m # ms) = m"
+
+
+text {* The set of primitive recursive functions of type @{typ "nat list => nat"}. *}
+
+constdefs
+  SC :: "nat list => nat"
+  "SC l == Suc (zeroHd l)"
 
-consts ack  :: "nat * nat => nat"
-recdef ack "less_than <*lex*> less_than"
-    "ack (0,n) =  Suc n"
-    "ack (Suc m,0) = (ack (m, 1))"
-    "ack (Suc m, Suc n) = ack (m, ack (Suc m, n))"
+  CONST :: "nat => nat list => nat"
+  "CONST k l == k"
+
+  PROJ :: "nat => nat list => nat"
+  "PROJ i l == zeroHd (drop i l)"
+
+  COMP :: "(nat list => nat) => (nat list => nat) list => nat list => nat"
+  "COMP g fs l == g (map (\<lambda>f. f l) fs)"
+
+  PREC :: "(nat list => nat) => (nat list => nat) => nat list => nat"
+  "PREC f g l ==
+    case l of
+      [] => 0
+    | x # l' => nat_rec (f l') (\<lambda>y r. g (r # y # l')) x"
+  -- {* Note that @{term g} is applied first to @{term "PREC f g y"} and then to @{term y}! *}
+
+consts PRIMREC :: "(nat list => nat) set"
+inductive PRIMREC
+  intros
+    SC: "SC \<in> PRIMREC"
+    CONST: "CONST k \<in> PRIMREC"
+    PROJ: "PROJ i \<in> PRIMREC"
+    COMP: "g \<in> PRIMREC ==> fs \<in> lists PRIMREC ==> COMP g fs \<in> PRIMREC"
+    PREC: "f \<in> PRIMREC ==> g \<in> PRIMREC ==> PREC f g \<in> PRIMREC"
+
+
+text {* Useful special cases of evaluation *}
+
+lemma SC [simp]: "SC (x # l) = Suc x"
+  apply (simp add: SC_def)
+  done
+
+lemma CONST [simp]: "CONST k l = k"
+  apply (simp add: CONST_def)
+  done
+
+lemma PROJ_0 [simp]: "PROJ 0 (x # l) = x"
+  apply (simp add: PROJ_def)
+  done
+
+lemma COMP_1 [simp]: "COMP g [f] l = g [f l]"
+  apply (simp add: COMP_def)
+  done
 
-consts  list_add :: nat list => nat
-primrec
-  "list_add []     = 0"
-  "list_add (m#ms) = m + list_add ms"
+lemma PREC_0 [simp]: "PREC f g (0 # l) = f l"
+  apply (simp add: PREC_def)
+  done
+
+lemma PREC_Suc [simp]: "PREC f g (Suc x # l) = g (PREC f g (x # l) # x # l)"
+  apply (simp add: PREC_def)
+  done
+
+
+text {* PROPERTY A 4 *}
+
+lemma less_ack2 [iff]: "j < ack (i, j)"
+  apply (induct i j rule: ack.induct)
+    apply simp_all
+  done
+
+
+text {* PROPERTY A 5-, the single-step lemma *}
+
+lemma ack_less_ack_Suc2 [iff]: "ack(i, j) < ack (i, Suc j)"
+  apply (induct i j rule: ack.induct)
+    apply simp_all
+  done
+
+
+text {* PROPERTY A 5, monotonicity for @{text "<"} *}
+
+lemma ack_less_mono2: "j < k ==> ack (i, j) < ack (i, k)"
+  apply (induct i k rule: ack.induct)
+    apply simp_all
+  apply (blast elim!: less_SucE intro: less_trans)
+  done
+
+
+text {* PROPERTY A 5', monotonicity for @{text \<le>} *}
+
+lemma ack_le_mono2: "j \<le> k ==> ack (i, j) \<le> ack (i, k)"
+  apply (simp add: order_le_less)
+  apply (blast intro: ack_less_mono2)
+  done
 
-consts  zeroHd  :: nat list => nat
-primrec
-  "zeroHd []     = 0"
-  "zeroHd (m#ms) = m"
+
+text {* PROPERTY A 6 *}
+
+lemma ack2_le_ack1 [iff]: "ack (i, Suc j) \<le> ack (Suc i, j)"
+  apply (induct j)
+   apply simp_all
+  apply (blast intro: ack_le_mono2 less_ack2 [THEN Suc_leI] le_trans)
+  done
+
+
+text {* PROPERTY A 7-, the single-step lemma *}
+
+lemma ack_less_ack_Suc1 [iff]: "ack (i, j) < ack (Suc i, j)"
+  apply (blast intro: ack_less_mono2 less_le_trans)
+  done
+
+
+text {* PROPERTY A 4'? Extra lemma needed for @{term CONST} case, constant functions *}
+
+lemma less_ack1 [iff]: "i < ack (i, j)"
+  apply (induct i)
+   apply simp_all
+  apply (blast intro: Suc_leI le_less_trans)
+  done
+
+
+text {* PROPERTY A 8 *}
+
+lemma ack_1 [simp]: "ack (1, j) = j + #2"
+  apply (induct j)
+   apply simp_all
+  done
+
+
+text {* PROPERTY A 9.  The unary @{term 1} and @{term 2} in @{term
+  ack} is essential for the rewriting. *}
+
+lemma ack_2 [simp]: "ack (2, j) = #2 * j + #3"
+  apply (induct j)
+   apply simp_all
+  done
 
 
-(** The set of primitive recursive functions of type  nat list => nat **)
-consts
-    PRIMREC :: (nat list => nat) set
-    SC      :: nat list => nat
-    CONST   :: [nat, nat list] => nat
-    PROJ    :: [nat, nat list] => nat
-    COMP    :: [nat list => nat, (nat list => nat)list, nat list] => nat
-    PREC    :: [nat list => nat, nat list => nat, nat list] => nat
+text {* PROPERTY A 7, monotonicity for @{text "<"} [not clear why
+  @{thm [source] ack_1} is now needed first!] *}
+
+lemma ack_less_mono1_aux: "ack (i, k) < ack (Suc (i +i'), k)"
+  apply (induct i k rule: ack.induct)
+    apply simp_all
+   prefer 2
+   apply (blast intro: less_trans ack_less_mono2)
+  apply (induct_tac i' n rule: ack.induct)
+    apply simp_all
+  apply (blast intro: Suc_leI [THEN le_less_trans] ack_less_mono2)
+  done
+
+lemma ack_less_mono1: "i < j ==> ack (i, k) < ack (j, k)"
+  apply (drule less_imp_Suc_add)
+  apply (blast intro!: ack_less_mono1_aux)
+  done
+
+
+text {* PROPERTY A 7', monotonicity for @{text "\<le>"} *}
+
+lemma ack_le_mono1: "i \<le> j ==> ack (i, k) \<le> ack (j, k)"
+  apply (simp add: order_le_less)
+  apply (blast intro: ack_less_mono1)
+  done
+
+
+text {* PROPERTY A 10 *}
+
+lemma ack_nest_bound: "ack(i1, ack (i2, j)) < ack (#2 + (i1 + i2), j)"
+  apply (simp add: numerals)
+  apply (rule ack2_le_ack1 [THEN [2] less_le_trans])
+  apply simp
+  apply (rule le_add1 [THEN ack_le_mono1, THEN le_less_trans])
+  apply (rule ack_less_mono1 [THEN ack_less_mono2])
+  apply (simp add: le_imp_less_Suc le_add2)
+  done
+
 
-defs
+text {* PROPERTY A 11 *}
 
-  SC_def    "SC l        == Suc (zeroHd l)"
+lemma ack_add_bound: "ack (i1, j) + ack (i2, j) < ack (#4 + (i1 + i2), j)"
+  apply (rule_tac j = "ack (2, ack (i1 + i2, j))" in less_trans)
+   prefer 2
+   apply (rule ack_nest_bound [THEN less_le_trans])
+   apply (simp add: Suc3_eq_add_3)
+  apply simp
+  apply (cut_tac i = i1 and m1 = i2 and k = j in le_add1 [THEN ack_le_mono1])
+  apply (cut_tac i = "i2" and m1 = i1 and k = j in le_add2 [THEN ack_le_mono1])
+  apply auto
+  done
+
+
+text {* PROPERTY A 12.  Article uses existential quantifier but the ALF proof
+  used @{text "k + 4"}.  Quantified version must be nested @{text
+  "\<exists>k'. \<forall>i j. ..."} *}
 
-  CONST_def "CONST k l   == k"
+lemma ack_add_bound2: "i < ack (k, j) ==> i + j < ack (#4 + k, j)"
+  apply (rule_tac j = "ack (k, j) + ack (0, j)" in less_trans)
+   prefer 2
+   apply (rule ack_add_bound [THEN less_le_trans])
+   apply simp
+  apply (rule add_less_mono less_ack2 | assumption)+
+  done
+
+
+
+text {* Inductive definition of the @{term PR} functions *}
 
-  PROJ_def  "PROJ i l    == zeroHd (drop i l)"
+text {* MAIN RESULT *}
+
+lemma SC_case: "SC l < ack (1, list_add l)"
+  apply (unfold SC_def)
+  apply (induct l)
+  apply (simp_all add: le_add1 le_imp_less_Suc)
+  done
+
+lemma CONST_case: "CONST k l < ack (k, list_add l)"
+  apply simp
+  done
 
-  COMP_def  "COMP g fs l == g (map (%f. f l) fs)"
+lemma PROJ_case [rule_format]: "\<forall>i. PROJ i l < ack (0, list_add l)"
+  apply (simp add: PROJ_def)
+  apply (induct l)
+   apply simp_all
+  apply (rule allI)
+  apply (case_tac i)
+  apply (simp (no_asm_simp) add: le_add1 le_imp_less_Suc)
+  apply (simp (no_asm_simp))
+  apply (blast intro: less_le_trans intro!: le_add2)
+  done
+
+
+text {* @{term COMP} case *}
 
-  (*Note that g is applied first to PREC f g y and then to y!*)
-  PREC_def  "PREC f g l == case l of
-                             []   => 0
-                           | x#l' => nat_rec (f l') (%y r. g (r#y#l')) x"
+lemma COMP_map_aux: "fs \<in> lists (PRIMREC \<inter> {f. \<exists>kf. \<forall>l. f l < ack (kf, list_add l)})
+  ==> \<exists>k. \<forall>l. list_add (map (\<lambda>f. f l) fs) < ack (k, list_add l)"
+  apply (erule lists.induct)
+  apply (rule_tac x = 0 in exI)
+   apply simp
+  apply safe
+  apply simp
+  apply (rule exI)
+  apply (blast intro: add_less_mono ack_add_bound less_trans)
+  done
+
+lemma COMP_case:
+  "\<forall>l. g l < ack (kg, list_add l) ==>
+  fs \<in> lists(PRIMREC Int {f. \<exists>kf. \<forall>l. f l < ack(kf, list_add l)})
+  ==> \<exists>k. \<forall>l. COMP g fs  l < ack(k, list_add l)"
+  apply (unfold COMP_def)
+  apply (frule Int_lower1 [THEN lists_mono, THEN subsetD])
+  apply (erule COMP_map_aux [THEN exE])
+  apply (rule exI)
+  apply (rule allI)
+  apply (drule spec)+
+  apply (erule less_trans)
+  apply (blast intro: ack_less_mono2 ack_nest_bound less_trans)
+  done
+
+
+text {* @{term PREC} case *}
 
-  
-inductive PRIMREC
-  intrs
-    SC       "SC : PRIMREC"
-    CONST    "CONST k : PRIMREC"
-    PROJ     "PROJ i : PRIMREC"
-    COMP     "[| g: PRIMREC; fs: lists PRIMREC |] ==> COMP g fs : PRIMREC"
-    PREC     "[| f: PRIMREC; g: PRIMREC |] ==> PREC f g: PRIMREC"
-  monos      lists_mono
+lemma PREC_case_aux:
+  "\<forall>l. f l + list_add l < ack (kf, list_add l) ==>
+    \<forall>l. g l + list_add l < ack (kg, list_add l) ==>
+    PREC f g l + list_add l < ack (Suc (kf + kg), list_add l)"
+  apply (unfold PREC_def)
+  apply (case_tac l)
+   apply simp_all
+   apply (blast intro: less_trans)
+  apply (erule ssubst) -- {* get rid of the needless assumption *}
+  apply (induct_tac a)
+   apply simp_all
+   txt {* base case *}
+   apply (blast intro: le_add1 [THEN le_imp_less_Suc, THEN ack_less_mono1] less_trans)
+  txt {* induction step *}
+  apply (rule Suc_leI [THEN le_less_trans])
+   apply (rule le_refl [THEN add_le_mono, THEN le_less_trans])
+    prefer 2
+    apply (erule spec)
+   apply (simp add: le_add2)
+  txt {* final part of the simplification *}
+  apply simp
+  apply (rule le_add2 [THEN ack_le_mono1, THEN le_less_trans])
+  apply (erule ack_less_mono2)
+  done
+
+lemma PREC_case:
+  "\<forall>l. f l < ack (kf, list_add l) ==>
+    \<forall>l. g l < ack (kg, list_add l) ==>
+    \<exists>k. \<forall>l. PREC f g l < ack (k, list_add l)"
+  apply (rule exI)
+  apply (rule allI)
+  apply (rule le_less_trans [OF le_add1 PREC_case_aux])
+   apply (blast intro: ack_add_bound2)+
+  done
+
+lemma ack_bounds_PRIMREC: "f \<in> PRIMREC ==> \<exists>k. \<forall>l. f l < ack (k, list_add l)"
+  apply (erule PRIMREC.induct)
+      apply (blast intro: SC_case CONST_case PROJ_case COMP_case PREC_case)+
+  done
+
+lemma ack_not_PRIMREC: "(\<lambda>l. case l of [] => 0 | x # l' => ack (x, x)) \<notin> PRIMREC"
+  apply (rule notI)
+  apply (erule ack_bounds_PRIMREC [THEN exE])
+  apply (rule less_irrefl)
+  apply (drule_tac x = "[x]" in spec)
+  apply simp
+  done
 
 end