src/HOL/Old_Number_Theory/Fib.thy
changeset 64282 261d42f0bfac
parent 64281 bfc2e92d9b4c
child 64283 979cdfdf7a79
--- a/src/HOL/Old_Number_Theory/Fib.thy	Tue Oct 18 07:04:08 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,148 +0,0 @@
-(*  Title:      HOL/Old_Number_Theory/Fib.thy
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1997  University of Cambridge
-*)
-
-section \<open>The Fibonacci function\<close>
-
-theory Fib
-imports Primes
-begin
-
-text \<open>
-  Fibonacci numbers: proofs of laws taken from:
-  R. L. Graham, D. E. Knuth, O. Patashnik.  Concrete Mathematics.
-  (Addison-Wesley, 1989)
-
-  \bigskip
-\<close>
-
-fun fib :: "nat \<Rightarrow> nat"
-where
-  "fib 0 = 0"
-| "fib (Suc 0) = 1"
-| fib_2: "fib (Suc (Suc n)) = fib n + fib (Suc n)"
-
-text \<open>
-  \medskip The difficulty in these proofs is to ensure that the
-  induction hypotheses are applied before the definition of @{term
-  fib}.  Towards this end, the @{term fib} equations are not declared
-  to the Simplifier and are applied very selectively at first.
-\<close>
-
-text\<open>We disable \<open>fib.fib_2fib_2\<close> for simplification ...\<close>
-declare fib_2 [simp del]
-
-text\<open>...then prove a version that has a more restrictive pattern.\<close>
-lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))"
-  by (rule fib_2)
-
-text \<open>\medskip Concrete Mathematics, page 280\<close>
-
-lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n"
-proof (induct n rule: fib.induct)
-  case 1 show ?case by simp
-next
-  case 2 show ?case  by (simp add: fib_2)
-next
-  case 3 thus ?case by (simp add: fib_2 add_mult_distrib2)
-qed
-
-lemma fib_Suc_neq_0: "fib (Suc n) \<noteq> 0"
-  apply (induct n rule: fib.induct)
-    apply (simp_all add: fib_2)
-  done
-
-lemma fib_Suc_gr_0: "0 < fib (Suc n)"
-  by (insert fib_Suc_neq_0 [of n], simp)  
-
-lemma fib_gr_0: "0 < n ==> 0 < fib n"
-  by (case_tac n, auto simp add: fib_Suc_gr_0) 
-
-
-text \<open>
-  \medskip Concrete Mathematics, page 278: Cassini's identity.  The proof is
-  much easier using integers, not natural numbers!
-\<close>
-
-lemma fib_Cassini_int:
- "int (fib (Suc (Suc n)) * fib n) =
-  (if n mod 2 = 0 then int (fib (Suc n) * fib (Suc n)) - 1
-   else int (fib (Suc n) * fib (Suc n)) + 1)"
-proof(induct n rule: fib.induct)
-  case 1 thus ?case by (simp add: fib_2)
-next
-  case 2 thus ?case by (simp add: fib_2 mod_Suc)
-next 
-  case (3 x) 
-  have "Suc 0 \<noteq> x mod 2 \<longrightarrow> x mod 2 = 0" by presburger
-  with "3.hyps" show ?case by (simp add: fib.simps add_mult_distrib add_mult_distrib2)
-qed
-
-text\<open>We now obtain a version for the natural numbers via the coercion 
-   function @{term int}.\<close>
-theorem fib_Cassini:
- "fib (Suc (Suc n)) * fib n =
-  (if n mod 2 = 0 then fib (Suc n) * fib (Suc n) - 1
-   else fib (Suc n) * fib (Suc n) + 1)"
-  apply (rule of_nat_eq_iff [where 'a = int, THEN iffD1]) 
-  using fib_Cassini_int apply (auto simp add: Suc_leI fib_Suc_gr_0 of_nat_diff)
-  done
-
-
-text \<open>\medskip Toward Law 6.111 of Concrete Mathematics\<close>
-
-lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (Suc n)) = Suc 0"
-  apply (induct n rule: fib.induct)
-    prefer 3
-    apply (simp add: gcd_commute fib_Suc3)
-   apply (simp_all add: fib_2)
-  done
-
-lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)"
-  apply (simp add: gcd_commute [of "fib m"])
-  apply (case_tac m)
-   apply simp 
-  apply (simp add: fib_add)
-  apply (simp add: add.commute gcd_non_0 [OF fib_Suc_gr_0])
-  apply (simp add: gcd_non_0 [OF fib_Suc_gr_0, symmetric])
-  apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel)
-  done
-
-lemma gcd_fib_diff: "m \<le> n ==> gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
-  by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) 
-
-lemma gcd_fib_mod: "0 < m ==> gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-proof (induct n rule: less_induct)
-  case (less n)
-  from less.prems have pos_m: "0 < m" .
-  show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-  proof (cases "m < n")
-    case True note m_n = True
-    then have m_n': "m \<le> n" by auto
-    with pos_m have pos_n: "0 < n" by auto
-    with pos_m m_n have diff: "n - m < n" by auto
-    have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))"
-    by (simp add: mod_if [of n]) (insert m_n, auto)
-    also have "\<dots> = gcd (fib m) (fib (n - m))" by (simp add: less.hyps diff pos_m)
-    also have "\<dots> = gcd (fib m) (fib n)" by (simp add: gcd_fib_diff m_n')
-    finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" .
-  next
-    case False then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-    by (cases "m = n") auto
-  qed
-qed
-
-lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)"  \<comment> \<open>Law 6.111\<close>
-  apply (induct m n rule: gcd_induct)
-  apply (simp_all add: gcd_non_0 gcd_commute gcd_fib_mod)
-  done
-
-theorem fib_mult_eq_sum:
-    "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
-  apply (induct n rule: fib.induct)
-    apply (auto simp add: atMost_Suc fib_2)
-  apply (simp add: add_mult_distrib add_mult_distrib2)
-  done
-
-end