--- a/src/HOL/Library/Lattice_Algebras.thy Wed Jan 12 16:41:49 2011 +0100
+++ b/src/HOL/Library/Lattice_Algebras.thy Wed Jan 12 17:14:27 2011 +0100
@@ -253,7 +253,7 @@
"a + a \<le> 0 \<longleftrightarrow> a \<le> 0"
proof -
have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)
- moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add)
+ moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by simp
ultimately show ?thesis by blast
qed
@@ -261,7 +261,7 @@
"a + a < 0 \<longleftrightarrow> a < 0"
proof -
have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp)
- moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add)
+ moreover have "\<dots> \<longleftrightarrow> a < 0" by simp
ultimately show ?thesis by blast
qed
@@ -428,7 +428,7 @@
instance lattice_ring \<subseteq> ordered_ring_abs
proof
fix a b :: "'a\<Colon> lattice_ring"
- assume "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
+ assume a: "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
show "abs (a*b) = abs a * abs b"
proof -
have s: "(0 <= a*b) | (a*b <= 0)"
@@ -437,7 +437,7 @@
apply (rule_tac contrapos_np[of "a*b <= 0"])
apply (simp)
apply (rule_tac split_mult_neg_le)
- apply (insert prems)
+ apply (insert a)
apply (blast)
done
have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
@@ -447,7 +447,7 @@
assume "0 <= a * b"
then show ?thesis
apply (simp_all add: mulprts abs_prts)
- apply (insert prems)
+ apply (insert a)
apply (auto simp add:
algebra_simps
iffD1[OF zero_le_iff_zero_nprt] iffD1[OF le_zero_iff_zero_pprt]
@@ -460,7 +460,7 @@
with s have "a*b <= 0" by simp
then show ?thesis
apply (simp_all add: mulprts abs_prts)
- apply (insert prems)
+ apply (insert a)
apply (auto simp add: algebra_simps)
apply(drule (1) mult_nonneg_nonneg[of a b],simp)
apply(drule (1) mult_nonpos_nonpos[of a b],simp)
@@ -485,31 +485,31 @@
then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
by (simp add: algebra_simps)
moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
- by (simp_all add: prems mult_mono)
+ by (simp_all add: assms mult_mono)
moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
proof -
have "pprt a * nprt b <= pprt a * nprt b2"
- by (simp add: mult_left_mono prems)
+ by (simp add: mult_left_mono assms)
moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
- by (simp add: mult_right_mono_neg prems)
+ by (simp add: mult_right_mono_neg assms)
ultimately show ?thesis
by simp
qed
moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
proof -
have "nprt a * pprt b <= nprt a2 * pprt b"
- by (simp add: mult_right_mono prems)
+ by (simp add: mult_right_mono assms)
moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
- by (simp add: mult_left_mono_neg prems)
+ by (simp add: mult_left_mono_neg assms)
ultimately show ?thesis
by simp
qed
moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
proof -
have "nprt a * nprt b <= nprt a * nprt b1"
- by (simp add: mult_left_mono_neg prems)
+ by (simp add: mult_left_mono_neg assms)
moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
- by (simp add: mult_right_mono_neg prems)
+ by (simp add: mult_right_mono_neg assms)
ultimately show ?thesis
by simp
qed
@@ -526,9 +526,9 @@
shows
"a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
proof -
- from prems have a1:"- a2 <= -a" by auto
- from prems have a2: "-a <= -a1" by auto
- from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg]
+ from assms have a1:"- a2 <= -a" by auto
+ from assms have a2: "-a <= -a1" by auto
+ from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 assms(3) assms(4), simplified nprt_neg pprt_neg]
have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp
then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
by (simp only: minus_le_iff)