--- a/src/HOL/Library/Lattice_Algebras.thy Sat Mar 17 12:00:11 2012 +0100
+++ b/src/HOL/Library/Lattice_Algebras.thy Sat Mar 17 12:21:15 2012 +0100
@@ -164,16 +164,16 @@
lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
lemma pprt_eq_id [simp, no_atp]: "0 \<le> x \<Longrightarrow> pprt x = x"
- by (simp add: pprt_def sup_aci sup_absorb1)
+ by (simp add: pprt_def sup_absorb1)
lemma nprt_eq_id [simp, no_atp]: "x \<le> 0 \<Longrightarrow> nprt x = x"
- by (simp add: nprt_def inf_aci inf_absorb1)
+ by (simp add: nprt_def inf_absorb1)
lemma pprt_eq_0 [simp, no_atp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"
- by (simp add: pprt_def sup_aci sup_absorb2)
+ by (simp add: pprt_def sup_absorb2)
lemma nprt_eq_0 [simp, no_atp]: "0 \<le> x \<Longrightarrow> nprt x = 0"
- by (simp add: nprt_def inf_aci inf_absorb2)
+ by (simp add: nprt_def inf_absorb2)
lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"
proof -