--- a/src/HOL/Nat.thy Thu Jun 26 17:25:29 2025 +0200
+++ b/src/HOL/Nat.thy Thu Jun 26 17:25:29 2025 +0200
@@ -215,7 +215,7 @@
primrec plus_nat
where
- add_0: "0 + n = (n::nat)"
+ add_0 [code]: "0 + n = (n::nat)"
| add_Suc: "Suc m + n = Suc (m + n)"
lemma add_0_right [simp]: "m + 0 = m"
@@ -225,8 +225,6 @@
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
by (induct m) simp_all
-declare add_0 [code]
-
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"
by simp
@@ -1501,8 +1499,8 @@
where funpow_code_def [code_abbrev]: "funpow = compow"
lemma [code]:
+ "funpow 0 f = id"
"funpow (Suc n) f = f \<circ> funpow n f"
- "funpow 0 f = id"
by (simp_all add: funpow_code_def)
end