--- a/src/HOL/Nominal/Examples/CR.thy Wed Jan 11 18:21:23 2006 +0100
+++ b/src/HOL/Nominal/Examples/CR.thy Wed Jan 11 18:38:32 2006 +0100
@@ -10,7 +10,7 @@
assumes a: "a\<sharp>t1"
shows "t1[a::=t2] = t1"
using a
-proof (nominal_induct t1 avoiding: a t2 rule: lam_induct)
+proof (nominal_induct t1 avoiding: a t2 rule: lam.induct)
case (Var b)
thus ?case by (simp add: fresh_atm)
next
@@ -32,7 +32,7 @@
assumes a: "a\<sharp>t1"
shows "t1[a::=t2] = t1"
using a
- by (nominal_induct t1 avoiding: a t2 rule: lam_induct)
+ by (nominal_induct t1 avoiding: a t2 rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)
lemma fresh_fact:
@@ -41,7 +41,7 @@
and b: "a\<sharp>t2"
shows "a\<sharp>(t1[b::=t2])"
using a b
-proof (nominal_induct t1 avoiding: a b t2 rule: lam_induct)
+proof (nominal_induct t1 avoiding: a b t2 rule: lam.induct)
case (Var c)
thus ?case by simp
next
@@ -64,7 +64,7 @@
and b: "a\<sharp>t2"
shows "a\<sharp>(t1[b::=t2])"
using a b
-by (nominal_induct t1 avoiding: a b t2 rule: lam_induct)
+by (nominal_induct t1 avoiding: a b t2 rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)
@@ -78,7 +78,7 @@
and b: "x\<sharp>L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a b
-proof (nominal_induct M avoiding: x y N L rule: lam_induct)
+proof (nominal_induct M avoiding: x y N L rule: lam.induct)
case (Var z) (* case 1: Variables*)
have "x\<noteq>y" by fact
have "x\<sharp>L" by fact
@@ -132,14 +132,14 @@
and b: "x\<sharp>L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a b
-by (nominal_induct M avoiding: x y N L rule: lam_induct)
+by (nominal_induct M avoiding: x y N L rule: lam.induct)
(auto simp add: fresh_fact forget)
lemma subst_rename:
assumes a: "c\<sharp>t1"
shows "t1[a::=t2] = ([(c,a)]\<bullet>t1)[c::=t2]"
using a
-proof (nominal_induct t1 avoiding: a c t2 rule: lam_induct)
+proof (nominal_induct t1 avoiding: a c t2 rule: lam.induct)
case (Var b)
thus "(Var b)[a::=t2] = ([(c,a)]\<bullet>(Var b))[c::=t2]" by (simp add: calc_atm fresh_atm)
next
@@ -166,7 +166,7 @@
assumes a: "c\<sharp>t1"
shows "t1[a::=t2] = ([(c,a)]\<bullet>t1)[c::=t2]"
using a
-apply(nominal_induct t1 avoiding: a c t2 rule: lam_induct)
+apply(nominal_induct t1 avoiding: a c t2 rule: lam.induct)
apply(auto simp add: calc_atm fresh_atm abs_fresh)
done
@@ -352,7 +352,7 @@
assumes a: "a\<sharp>t2"
shows "a\<sharp>(t1[a::=t2])"
using a
-proof (nominal_induct t1 avoiding: a t2 rule: lam_induct)
+proof (nominal_induct t1 avoiding: a t2 rule: lam.induct)
case (Var b)
thus ?case by (simp add: fresh_atm)
next
@@ -473,7 +473,7 @@
assumes a: "N\<longrightarrow>\<^isub>1N'"
shows "M[x::=N] \<longrightarrow>\<^isub>1 M[x::=N']"
using a
-proof (nominal_induct M avoiding: x N N' rule: lam_induct)
+proof (nominal_induct M avoiding: x N N' rule: lam.induct)
case (Var y)
show "Var y[x::=N] \<longrightarrow>\<^isub>1 Var y[x::=N']" by (cases "x=y", auto)
next
@@ -488,7 +488,7 @@
assumes a: "N\<longrightarrow>\<^isub>1N'"
shows "M[x::=N] \<longrightarrow>\<^isub>1 M[x::=N']"
using a
-apply(nominal_induct M avoiding: x N N' rule: lam_induct)
+apply(nominal_induct M avoiding: x N N' rule: lam.induct)
apply(auto simp add: fresh_prod fresh_atm)
done