src/ZF/Perm.thy
changeset 13176 312bd350579b
parent 9570 e16e168984e1
child 13180 a82610e49b2d
--- a/src/ZF/Perm.thy	Thu May 23 17:05:21 2002 +0200
+++ b/src/ZF/Perm.thy	Fri May 24 13:15:37 2002 +0200
@@ -9,30 +9,662 @@
   -- Lemmas for the Schroeder-Bernstein Theorem
 *)
 
-Perm = mono + func +
-consts
-  O     :: [i,i]=>i      (infixr 60)
-
-defs
-  (*composition of relations and functions; NOT Suppes's relative product*)
-  comp_def    "r O s == {xz : domain(s)*range(r) . 
-                              EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
+theory Perm = mono + func:
 
 constdefs
+
+  (*composition of relations and functions; NOT Suppes's relative product*)
+  comp     :: "[i,i]=>i"      (infixr "O" 60)
+    "r O s == {xz : domain(s)*range(r) . 
+               EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
+
   (*the identity function for A*)
-  id    :: i=>i
-  "id(A) == (lam x:A. x)"
+  id    :: "i=>i"
+    "id(A) == (lam x:A. x)"
 
   (*one-to-one functions from A to B*)
-  inj   :: [i,i]=>i
-  "inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}"
+  inj   :: "[i,i]=>i"
+    "inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}"
 
   (*onto functions from A to B*)
-  surj  :: [i,i]=>i
-  "surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
+  surj  :: "[i,i]=>i"
+    "surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
 
   (*one-to-one and onto functions*)
-  bij   :: [i,i]=>i
-  "bij(A,B) == inj(A,B) Int surj(A,B)"
+  bij   :: "[i,i]=>i"
+    "bij(A,B) == inj(A,B) Int surj(A,B)"
+
+
+(** Surjective function space **)
+
+lemma surj_is_fun: "f: surj(A,B) ==> f: A->B"
+apply (unfold surj_def)
+apply (erule CollectD1)
+done
+
+lemma fun_is_surj: "f : Pi(A,B) ==> f: surj(A,range(f))"
+apply (unfold surj_def)
+apply (blast intro: apply_equality range_of_fun domain_type)
+done
+
+lemma surj_range: "f: surj(A,B) ==> range(f)=B"
+apply (unfold surj_def)
+apply (best intro: apply_Pair elim: range_type)
+done
+
+(** A function with a right inverse is a surjection **)
+
+lemma f_imp_surjective: 
+    "[| f: A->B;  !!y. y:B ==> d(y): A;  !!y. y:B ==> f`d(y) = y |]
+     ==> f: surj(A,B)"
+apply (simp add: surj_def) 
+apply (blast)
+done
+
+lemma lam_surjective: 
+    "[| !!x. x:A ==> c(x): B;            
+        !!y. y:B ==> d(y): A;            
+        !!y. y:B ==> c(d(y)) = y         
+     |] ==> (lam x:A. c(x)) : surj(A,B)"
+apply (rule_tac d = "d" in f_imp_surjective) 
+apply (simp_all add: lam_type)
+done
+
+(*Cantor's theorem revisited*)
+lemma cantor_surj: "f ~: surj(A,Pow(A))"
+apply (unfold surj_def)
+apply safe
+apply (cut_tac cantor)
+apply (best del: subsetI) 
+done
+
+
+(** Injective function space **)
+
+lemma inj_is_fun: "f: inj(A,B) ==> f: A->B"
+apply (unfold inj_def)
+apply (erule CollectD1)
+done
+
+(*Good for dealing with sets of pairs, but a bit ugly in use [used in AC]*)
+lemma inj_equality: 
+    "[| <a,b>:f;  <c,b>:f;  f: inj(A,B) |] ==> a=c"
+apply (unfold inj_def)
+apply (blast dest: Pair_mem_PiD)
+done
+
+lemma inj_apply_equality: "[| f:inj(A,B);  a:A;  b:A;  f`a=f`b |] ==> a=b"
+apply (unfold inj_def)
+apply blast
+done
+
+(** A function with a left inverse is an injection **)
+
+lemma f_imp_injective: "[| f: A->B;  ALL x:A. d(f`x)=x |] ==> f: inj(A,B)"
+apply (simp (no_asm_simp) add: inj_def)
+apply (blast intro: subst_context [THEN box_equals])
+done
+
+lemma lam_injective: 
+    "[| !!x. x:A ==> c(x): B;            
+        !!x. x:A ==> d(c(x)) = x |]
+     ==> (lam x:A. c(x)) : inj(A,B)"
+apply (rule_tac d = "d" in f_imp_injective)
+apply (simp_all add: lam_type)
+done
+
+(** Bijections **)
+
+lemma bij_is_inj: "f: bij(A,B) ==> f: inj(A,B)"
+apply (unfold bij_def)
+apply (erule IntD1)
+done
+
+lemma bij_is_surj: "f: bij(A,B) ==> f: surj(A,B)"
+apply (unfold bij_def)
+apply (erule IntD2)
+done
+
+(* f: bij(A,B) ==> f: A->B *)
+lemmas bij_is_fun = bij_is_inj [THEN inj_is_fun, standard]
+
+lemma lam_bijective: 
+    "[| !!x. x:A ==> c(x): B;            
+        !!y. y:B ==> d(y): A;            
+        !!x. x:A ==> d(c(x)) = x;        
+        !!y. y:B ==> c(d(y)) = y         
+     |] ==> (lam x:A. c(x)) : bij(A,B)"
+apply (unfold bij_def)
+apply (blast intro!: lam_injective lam_surjective);
+done
+
+lemma RepFun_bijective: "(ALL y : x. EX! y'. f(y') = f(y))   
+      ==> (lam z:{f(y). y:x}. THE y. f(y) = z) : bij({f(y). y:x}, x)"
+apply (rule_tac d = "f" in lam_bijective)
+apply (auto simp add: the_equality2)
+done
+
+
+(** Identity function **)
+
+lemma idI [intro!]: "a:A ==> <a,a> : id(A)"
+apply (unfold id_def)
+apply (erule lamI)
+done
+
+lemma idE [elim!]: "[| p: id(A);  !!x.[| x:A; p=<x,x> |] ==> P |] ==>  P"
+apply (simp add: id_def lam_def) 
+apply (blast intro: elim:); 
+done
+
+lemma id_type: "id(A) : A->A"
+apply (unfold id_def)
+apply (rule lam_type)
+apply assumption
+done
+
+lemma id_conv [simp]: "x:A ==> id(A)`x = x"
+apply (unfold id_def)
+apply (simp (no_asm_simp))
+done
+
+lemma id_mono: "A<=B ==> id(A) <= id(B)"
+apply (unfold id_def)
+apply (erule lam_mono)
+done
+
+lemma id_subset_inj: "A<=B ==> id(A): inj(A,B)"
+apply (simp add: inj_def id_def)
+apply (blast intro: lam_type) 
+done
+
+lemmas id_inj = subset_refl [THEN id_subset_inj, standard]
+
+lemma id_surj: "id(A): surj(A,A)"
+apply (unfold id_def surj_def)
+apply (simp (no_asm_simp))
+done
+
+lemma id_bij: "id(A): bij(A,A)"
+apply (unfold bij_def)
+apply (blast intro: id_inj id_surj)
+done
+
+lemma subset_iff_id: "A <= B <-> id(A) : A->B"
+apply (unfold id_def)
+apply (force intro!: lam_type dest: apply_type);
+done
+
+
+(*** Converse of a function ***)
+
+lemma inj_converse_fun: "f: inj(A,B) ==> converse(f) : range(f)->A"
+apply (unfold inj_def)
+apply (simp (no_asm_simp) add: Pi_iff function_def)
+apply (erule CollectE)
+apply (simp (no_asm_simp) add: apply_iff)
+apply (blast dest: fun_is_rel)
+done
+
+(** Equations for converse(f) **)
+
+(*The premises are equivalent to saying that f is injective...*) 
+lemma left_inverse_lemma:
+     "[| f: A->B;  converse(f): C->A;  a: A |] ==> converse(f)`(f`a) = a"
+by (blast intro: apply_Pair apply_equality converseI)
+
+lemma left_inverse [simp]: "[| f: inj(A,B);  a: A |] ==> converse(f)`(f`a) = a"
+apply (blast intro: left_inverse_lemma inj_converse_fun inj_is_fun)
+done
+
+lemmas left_inverse_bij = bij_is_inj [THEN left_inverse, standard]
+
+lemma right_inverse_lemma:
+     "[| f: A->B;  converse(f): C->A;  b: C |] ==> f`(converse(f)`b) = b"
+apply (rule apply_Pair [THEN converseD [THEN apply_equality]])
+apply (auto ); 
+done
+
+(*Should the premises be f:surj(A,B), b:B for symmetry with left_inverse?
+  No: they would not imply that converse(f) was a function! *)
+lemma right_inverse [simp]:
+     "[| f: inj(A,B);  b: range(f) |] ==> f`(converse(f)`b) = b"
+by (blast intro: right_inverse_lemma inj_converse_fun inj_is_fun)
+
+lemma right_inverse_bij: "[| f: bij(A,B);  b: B |] ==> f`(converse(f)`b) = b"
+apply (force simp add: bij_def surj_range)
+done
+
+(** Converses of injections, surjections, bijections **)
+
+lemma inj_converse_inj: "f: inj(A,B) ==> converse(f): inj(range(f), A)"
+apply (rule f_imp_injective)
+apply (erule inj_converse_fun)
+apply (clarify ); 
+apply (rule right_inverse);
+ apply assumption
+apply (blast intro: elim:); 
+done
+
+lemma inj_converse_surj: "f: inj(A,B) ==> converse(f): surj(range(f), A)"
+by (blast intro: f_imp_surjective inj_converse_fun left_inverse inj_is_fun 
+                 range_of_fun [THEN apply_type])
+
+(*Adding this as an intro! rule seems to cause looping*)
+lemma bij_converse_bij [TC]: "f: bij(A,B) ==> converse(f): bij(B,A)"
+apply (unfold bij_def)
+apply (fast elim: surj_range [THEN subst] inj_converse_inj inj_converse_surj)
+done
+
+
+
+(** Composition of two relations **)
+
+(*The inductive definition package could derive these theorems for (r O s)*)
+
+lemma compI [intro]: "[| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s"
+apply (unfold comp_def)
+apply blast
+done
+
+lemma compE [elim!]: 
+    "[| xz : r O s;   
+        !!x y z. [| xz=<x,z>;  <x,y>:s;  <y,z>:r |] ==> P |]
+     ==> P"
+apply (unfold comp_def)
+apply blast
+done
+
+lemma compEpair: 
+    "[| <a,c> : r O s;   
+        !!y. [| <a,y>:s;  <y,c>:r |] ==> P |]
+     ==> P"
+apply (erule compE)
+apply (simp add: );  
+done
+
+lemma converse_comp: "converse(R O S) = converse(S) O converse(R)"
+apply blast
+done
+
+
+(** Domain and Range -- see Suppes, section 3.1 **)
+
+(*Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327*)
+lemma range_comp: "range(r O s) <= range(r)"
+apply blast
+done
+
+lemma range_comp_eq: "domain(r) <= range(s) ==> range(r O s) = range(r)"
+apply (rule range_comp [THEN equalityI])
+apply blast
+done
+
+lemma domain_comp: "domain(r O s) <= domain(s)"
+apply blast
+done
+
+lemma domain_comp_eq: "range(s) <= domain(r) ==> domain(r O s) = domain(s)"
+apply (rule domain_comp [THEN equalityI])
+apply blast
+done
+
+lemma image_comp: "(r O s)``A = r``(s``A)"
+apply blast
+done
+
+
+(** Other results **)
+
+lemma comp_mono: "[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)"
+apply blast
+done
+
+(*composition preserves relations*)
+lemma comp_rel: "[| s<=A*B;  r<=B*C |] ==> (r O s) <= A*C"
+apply blast
+done
+
+(*associative law for composition*)
+lemma comp_assoc: "(r O s) O t = r O (s O t)"
+apply blast
+done
+
+(*left identity of composition; provable inclusions are
+        id(A) O r <= r       
+  and   [| r<=A*B; B<=C |] ==> r <= id(C) O r *)
+lemma left_comp_id: "r<=A*B ==> id(B) O r = r"
+apply blast
+done
+
+(*right identity of composition; provable inclusions are
+        r O id(A) <= r
+  and   [| r<=A*B; A<=C |] ==> r <= r O id(C) *)
+lemma right_comp_id: "r<=A*B ==> r O id(A) = r"
+apply blast
+done
+
+
+(** Composition preserves functions, injections, and surjections **)
+
+lemma comp_function: 
+    "[| function(g);  function(f) |] ==> function(f O g)"
+apply (unfold function_def)
+apply blast
+done
+
+(*Don't think the premises can be weakened much*)
+lemma comp_fun: "[| g: A->B;  f: B->C |] ==> (f O g) : A->C"
+apply (auto simp add: Pi_def comp_function Pow_iff comp_rel)
+apply (subst range_rel_subset [THEN domain_comp_eq]);
+apply (auto ); 
+done
+
+(*Thanks to the new definition of "apply", the premise f: B->C is gone!*)
+lemma comp_fun_apply [simp]:
+     "[| g: A->B;  a:A |] ==> (f O g)`a = f`(g`a)"
+apply (frule apply_Pair, assumption) 
+apply (simp add: apply_def image_comp)
+apply (blast dest: apply_equality) 
+done
+
+(*Simplifies compositions of lambda-abstractions*)
+lemma comp_lam: 
+    "[| !!x. x:A ==> b(x): B |]
+     ==> (lam y:B. c(y)) O (lam x:A. b(x)) = (lam x:A. c(b(x)))"
+apply (subgoal_tac "(lam x:A. b(x)) : A -> B") 
+ apply (rule fun_extension)
+   apply (blast intro: comp_fun lam_funtype)
+  apply (rule lam_funtype)
+ apply (simp add: ); 
+apply (simp add: lam_type); 
+done
+
+lemma comp_inj:
+     "[| g: inj(A,B);  f: inj(B,C) |] ==> (f O g) : inj(A,C)"
+apply (frule inj_is_fun [of g]) 
+apply (frule inj_is_fun [of f]) 
+apply (rule_tac d = "%y. converse (g) ` (converse (f) ` y)" in f_imp_injective)
+ apply (blast intro: comp_fun);
+apply (simp add: );  
+done
+
+lemma comp_surj: 
+    "[| g: surj(A,B);  f: surj(B,C) |] ==> (f O g) : surj(A,C)"
+apply (unfold surj_def)
+apply (blast intro!: comp_fun comp_fun_apply)
+done
+
+lemma comp_bij: 
+    "[| g: bij(A,B);  f: bij(B,C) |] ==> (f O g) : bij(A,C)"
+apply (unfold bij_def)
+apply (blast intro: comp_inj comp_surj)
+done
+
+
+(** Dual properties of inj and surj -- useful for proofs from
+    D Pastre.  Automatic theorem proving in set theory. 
+    Artificial Intelligence, 10:1--27, 1978. **)
+
+lemma comp_mem_injD1: 
+    "[| (f O g): inj(A,C);  g: A->B;  f: B->C |] ==> g: inj(A,B)"
+apply (unfold inj_def)
+apply (force ); 
+done
+
+lemma comp_mem_injD2: 
+    "[| (f O g): inj(A,C);  g: surj(A,B);  f: B->C |] ==> f: inj(B,C)"
+apply (unfold inj_def surj_def)
+apply safe
+apply (rule_tac x1 = "x" in bspec [THEN bexE])
+apply (erule_tac [3] x1 = "w" in bspec [THEN bexE])
+apply assumption+
+apply safe
+apply (rule_tac t = "op ` (g) " in subst_context)
+apply (erule asm_rl bspec [THEN bspec, THEN mp])+
+apply (simp (no_asm_simp))
+done
+
+lemma comp_mem_surjD1: 
+    "[| (f O g): surj(A,C);  g: A->B;  f: B->C |] ==> f: surj(B,C)"
+apply (unfold surj_def)
+apply (blast intro!: comp_fun_apply [symmetric] apply_funtype)
+done
+
+
+lemma comp_mem_surjD2: 
+    "[| (f O g): surj(A,C);  g: A->B;  f: inj(B,C) |] ==> g: surj(A,B)"
+apply (unfold inj_def surj_def)
+apply safe
+apply (drule_tac x = "f`y" in bspec);
+apply (auto );  
+apply (blast intro: apply_funtype)
+done
+
+(** inverses of composition **)
+
+(*left inverse of composition; one inclusion is
+        f: A->B ==> id(A) <= converse(f) O f *)
+lemma left_comp_inverse: "f: inj(A,B) ==> converse(f) O f = id(A)"
+apply (unfold inj_def)
+apply (clarify ); 
+apply (rule equalityI) 
+ apply (auto simp add: apply_iff)
+apply (blast intro: elim:);  
+done
+
+(*right inverse of composition; one inclusion is
+                f: A->B ==> f O converse(f) <= id(B) 
+*)
+lemma right_comp_inverse: 
+    "f: surj(A,B) ==> f O converse(f) = id(B)"
+apply (simp add: surj_def) 
+apply (clarify ); 
+apply (rule equalityI)
+apply (best elim: domain_type range_type dest: apply_equality2)
+apply (blast intro: apply_Pair)
+done
+
+
+(** Proving that a function is a bijection **)
+
+lemma comp_eq_id_iff: 
+    "[| f: A->B;  g: B->A |] ==> f O g = id(B) <-> (ALL y:B. f`(g`y)=y)"
+apply (unfold id_def)
+apply safe
+ apply (drule_tac t = "%h. h`y " in subst_context)
+ apply simp
+apply (rule fun_extension)
+  apply (blast intro: comp_fun lam_type)
+ apply auto
+done
+
+lemma fg_imp_bijective: 
+    "[| f: A->B;  g: B->A;  f O g = id(B);  g O f = id(A) |] ==> f : bij(A,B)"
+apply (unfold bij_def)
+apply (simp add: comp_eq_id_iff)
+apply (blast intro: f_imp_injective f_imp_surjective apply_funtype);
+done
+
+lemma nilpotent_imp_bijective: "[| f: A->A;  f O f = id(A) |] ==> f : bij(A,A)"
+apply (blast intro: fg_imp_bijective)
+done
+
+lemma invertible_imp_bijective: "[| converse(f): B->A;  f: A->B |] ==> f : bij(A,B)"
+apply (simp (no_asm_simp) add: fg_imp_bijective comp_eq_id_iff left_inverse_lemma right_inverse_lemma)
+done
+
+(** Unions of functions -- cf similar theorems on func.ML **)
+
+(*Theorem by KG, proof by LCP*)
+lemma inj_disjoint_Un:
+     "[| f: inj(A,B);  g: inj(C,D);  B Int D = 0 |]  
+      ==> (lam a: A Un C. if a:A then f`a else g`a) : inj(A Un C, B Un D)"
+apply (rule_tac d = "%z. if z:B then converse (f) `z else converse (g) `z" in lam_injective)
+apply (auto simp add: inj_is_fun [THEN apply_type])
+apply (blast intro: inj_is_fun [THEN apply_type])
+done
+
+lemma surj_disjoint_Un: 
+    "[| f: surj(A,B);  g: surj(C,D);  A Int C = 0 |]   
+     ==> (f Un g) : surj(A Un C, B Un D)"
+apply (unfold surj_def)
+apply (blast intro: fun_disjoint_apply1 fun_disjoint_apply2 fun_disjoint_Un trans)
+done
+
+(*A simple, high-level proof; the version for injections follows from it,
+  using  f:inj(A,B) <-> f:bij(A,range(f))  *)
+lemma bij_disjoint_Un:
+     "[| f: bij(A,B);  g: bij(C,D);  A Int C = 0;  B Int D = 0 |]  
+      ==> (f Un g) : bij(A Un C, B Un D)"
+apply (rule invertible_imp_bijective)
+apply (subst converse_Un)
+apply (auto intro: fun_disjoint_Un bij_is_fun bij_converse_bij)
+done
+
+
+(** Restrictions as surjections and bijections *)
+
+lemma surj_image:
+    "f: Pi(A,B) ==> f: surj(A, f``A)"
+apply (simp add: surj_def); 
+apply (blast intro: apply_equality apply_Pair Pi_type); 
+done
+
+lemma restrict_image [simp]: "restrict(f,A) `` B = f `` (A Int B)"
+apply (auto simp add: restrict_def)
+done
+
+lemma restrict_inj: 
+    "[| f: inj(A,B);  C<=A |] ==> restrict(f,C): inj(C,B)"
+apply (unfold inj_def)
+apply (safe elim!: restrict_type2); 
+apply (auto ); 
+done
+
+lemma restrict_surj: "[| f: Pi(A,B);  C<=A |] ==> restrict(f,C): surj(C, f``C)"
+apply (insert restrict_type2 [THEN surj_image])
+apply (simp add: restrict_image); 
+done
+
+lemma restrict_bij: 
+    "[| f: inj(A,B);  C<=A |] ==> restrict(f,C): bij(C, f``C)"
+apply (unfold inj_def bij_def)
+apply (blast intro!: restrict restrict_surj intro: box_equals surj_is_fun)
+done
+
+
+(*** Lemmas for Ramsey's Theorem ***)
+
+lemma inj_weaken_type: "[| f: inj(A,B);  B<=D |] ==> f: inj(A,D)"
+apply (unfold inj_def)
+apply (blast intro: fun_weaken_type)
+done
+
+lemma inj_succ_restrict:
+     "[| f: inj(succ(m), A) |] ==> restrict(f,m) : inj(m, A-{f`m})"
+apply (rule restrict_bij [THEN bij_is_inj, THEN inj_weaken_type])
+apply assumption
+apply blast
+apply (unfold inj_def)
+apply (fast elim: range_type mem_irrefl dest: apply_equality)
+done
+
+
+lemma inj_extend: 
+    "[| f: inj(A,B);  a~:A;  b~:B |]  
+     ==> cons(<a,b>,f) : inj(cons(a,A), cons(b,B))"
+apply (unfold inj_def)
+apply (force intro: apply_type  simp add: fun_extend)
+done
+
+
+ML
+{*
+val comp_def = thm "comp_def";
+val id_def = thm "id_def";
+val inj_def = thm "inj_def";
+val surj_def = thm "surj_def";
+val bij_def = thm "bij_def";
+
+val surj_is_fun = thm "surj_is_fun";
+val fun_is_surj = thm "fun_is_surj";
+val surj_range = thm "surj_range";
+val f_imp_surjective = thm "f_imp_surjective";
+val lam_surjective = thm "lam_surjective";
+val cantor_surj = thm "cantor_surj";
+val inj_is_fun = thm "inj_is_fun";
+val inj_equality = thm "inj_equality";
+val inj_apply_equality = thm "inj_apply_equality";
+val f_imp_injective = thm "f_imp_injective";
+val lam_injective = thm "lam_injective";
+val bij_is_inj = thm "bij_is_inj";
+val bij_is_surj = thm "bij_is_surj";
+val bij_is_fun = thm "bij_is_fun";
+val lam_bijective = thm "lam_bijective";
+val RepFun_bijective = thm "RepFun_bijective";
+val idI = thm "idI";
+val idE = thm "idE";
+val id_type = thm "id_type";
+val id_conv = thm "id_conv";
+val id_mono = thm "id_mono";
+val id_subset_inj = thm "id_subset_inj";
+val id_inj = thm "id_inj";
+val id_surj = thm "id_surj";
+val id_bij = thm "id_bij";
+val subset_iff_id = thm "subset_iff_id";
+val inj_converse_fun = thm "inj_converse_fun";
+val left_inverse_lemma = thm "left_inverse_lemma";
+val left_inverse = thm "left_inverse";
+val left_inverse_bij = thm "left_inverse_bij";
+val right_inverse_lemma = thm "right_inverse_lemma";
+val right_inverse = thm "right_inverse";
+val right_inverse_bij = thm "right_inverse_bij";
+val inj_converse_inj = thm "inj_converse_inj";
+val inj_converse_surj = thm "inj_converse_surj";
+val bij_converse_bij = thm "bij_converse_bij";
+val compI = thm "compI";
+val compE = thm "compE";
+val compEpair = thm "compEpair";
+val converse_comp = thm "converse_comp";
+val range_comp = thm "range_comp";
+val range_comp_eq = thm "range_comp_eq";
+val domain_comp = thm "domain_comp";
+val domain_comp_eq = thm "domain_comp_eq";
+val image_comp = thm "image_comp";
+val comp_mono = thm "comp_mono";
+val comp_rel = thm "comp_rel";
+val comp_assoc = thm "comp_assoc";
+val left_comp_id = thm "left_comp_id";
+val right_comp_id = thm "right_comp_id";
+val comp_function = thm "comp_function";
+val comp_fun = thm "comp_fun";
+val comp_fun_apply = thm "comp_fun_apply";
+val comp_lam = thm "comp_lam";
+val comp_inj = thm "comp_inj";
+val comp_surj = thm "comp_surj";
+val comp_bij = thm "comp_bij";
+val comp_mem_injD1 = thm "comp_mem_injD1";
+val comp_mem_injD2 = thm "comp_mem_injD2";
+val comp_mem_surjD1 = thm "comp_mem_surjD1";
+val comp_mem_surjD2 = thm "comp_mem_surjD2";
+val left_comp_inverse = thm "left_comp_inverse";
+val right_comp_inverse = thm "right_comp_inverse";
+val comp_eq_id_iff = thm "comp_eq_id_iff";
+val fg_imp_bijective = thm "fg_imp_bijective";
+val nilpotent_imp_bijective = thm "nilpotent_imp_bijective";
+val invertible_imp_bijective = thm "invertible_imp_bijective";
+val inj_disjoint_Un = thm "inj_disjoint_Un";
+val surj_disjoint_Un = thm "surj_disjoint_Un";
+val bij_disjoint_Un = thm "bij_disjoint_Un";
+val surj_image = thm "surj_image";
+val restrict_image = thm "restrict_image";
+val restrict_inj = thm "restrict_inj";
+val restrict_surj = thm "restrict_surj";
+val restrict_bij = thm "restrict_bij";
+val inj_weaken_type = thm "inj_weaken_type";
+val inj_succ_restrict = thm "inj_succ_restrict";
+val inj_extend = thm "inj_extend";
+*}
 
 end