src/HOL/Subst/Unifier.ML
changeset 968 3cdaa8724175
child 972 e61b058d58d2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Subst/Unifier.ML	Tue Mar 21 13:22:28 1995 +0100
@@ -0,0 +1,299 @@
+(*  Title: 	Substitutions/unifier.ML
+    Author: 	Martin Coen, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+For unifier.thy.
+Properties of unifiers.
+Cases for partial correctness of algorithm and conditions for termination.
+*)
+
+open Unifier;
+
+val unify_defs =
+    [Idem_def,Unifier_def,MoreGeneral_def,MGUnifier_def,MGIUnifier_def];
+
+(**** Unifiers ****)
+
+goalw Unifier.thy [Unifier_def] "Unifier s t u = (t <| s = u <| s)";
+by (rtac refl 1);
+qed "Unifier_iff";
+
+goal Unifier.thy
+    "Unifier s (Comb t u) (Comb v w) --> Unifier s t v & Unifier s u w";
+by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
+val Unifier_Comb  = store_thm("Unifier_Comb", result() RS mp RS conjE);
+
+goal Unifier.thy
+  "~v : vars_of(t) --> ~v : vars_of(u) -->Unifier s t u --> \
+\  Unifier (<v,r>#s) t u";
+by (simp_tac (subst_ss addsimps [Unifier_iff,repl_invariance]) 1);
+val Cons_Unifier  = store_thm("Cons_Unifier", result() RS mp RS mp RS mp);
+
+(**** Most General Unifiers ****)
+
+goalw Unifier.thy [MoreGeneral_def]  "r >> s = (EX q. s =s= r <> q)";
+by (rtac refl 1);
+qed "MoreGen_iff";
+
+goal Unifier.thy  "[] >> s";
+by (simp_tac (subst_ss addsimps [MoreGen_iff]) 1);
+by (fast_tac (set_cs addIs [refl RS subst_refl]) 1);
+qed "MoreGen_Nil";
+
+goalw Unifier.thy unify_defs
+    "MGUnifier s t u = (ALL r.Unifier r t u = s >> r)";
+by (REPEAT (ares_tac [iffI,allI] 1 ORELSE 
+            eresolve_tac [conjE,allE,mp,exE,ssubst_subst2] 1));
+by (asm_simp_tac (subst_ss addsimps [subst_comp]) 1);
+by (fast_tac (set_cs addIs [comp_Nil RS sym RS subst_refl]) 1);
+qed "MGU_iff";
+
+val [prem] = goal Unifier.thy
+     "~ Var(v) <: t ==> MGUnifier [<v,t>] (Var v) t";
+by (simp_tac (subst_ss addsimps [MGU_iff,MoreGen_iff,Unifier_iff]) 1);
+by (REPEAT_SOME (step_tac set_cs));
+by (etac subst 1);
+by (etac ssubst_subst2 2);
+by (rtac (Cons_trivial RS subst_sym) 1);
+by (simp_tac (subst_ss addsimps [prem RS Var_not_occs,Var_subst]) 1);
+qed "MGUnifier_Var";
+
+(**** Most General Idempotent Unifiers ****)
+
+goal Unifier.thy "r <> r =s= r --> s =s= r <> q --> r <> s =s= s";
+by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1);
+val MGIU_iff_lemma  = store_thm("MGIU_iff_lemma", result() RS mp RS mp);
+
+goalw Unifier.thy unify_defs
+ "MGIUnifier s t u = \
+\  (Idem(s) & Unifier s t u & (ALL r.Unifier r t u --> s<>r=s=r))";
+by (fast_tac (set_cs addEs [subst_sym,MGIU_iff_lemma]) 1);
+qed "MGIU_iff";
+
+(**** Idempotence ****)
+
+goalw Unifier.thy unify_defs "Idem(s) = (s <> s =s= s)";
+by (rtac refl 1);
+qed "raw_Idem_iff";
+
+goal Unifier.thy "Idem(s) = (sdom(s) Int srange(s) = {})";
+by (simp_tac (subst_ss addsimps [raw_Idem_iff,subst_eq_iff,subst_comp,
+                                invariance,dom_range_disjoint])1);
+qed "Idem_iff";
+
+goal Unifier.thy "Idem([])";
+by (simp_tac (subst_ss addsimps [raw_Idem_iff,refl RS subst_refl]) 1);
+qed "Idem_Nil";
+
+goal Unifier.thy "~ (Var(v) <: t) --> Idem([<v,t>])";
+by (simp_tac (subst_ss addsimps [Var_subst,vars_iff_occseq,Idem_iff,srange_iff]
+                       setloop (split_tac [expand_if])) 1);
+by (fast_tac set_cs 1);
+val Var_Idem  = store_thm("Var_Idem", result() RS mp);
+
+val [prem] = goalw Unifier.thy [Idem_def]
+     "Idem(r) ==>  Unifier s (t <| r) (u <| r) --> Unifier (r <> s) (t <| r) (u <| r)";
+by (simp_tac (subst_ss addsimps 
+	      [Unifier_iff,subst_comp,prem RS comp_subst_subst]) 1);
+val Unifier_Idem_subst  = store_thm("Unifier_Idem_subst", result() RS mp);
+
+val [prem] = goal Unifier.thy 
+     "r <> s =s= s ==>  Unifier s t u --> Unifier s (t <| r) (u <| r)";
+by (simp_tac (subst_ss addsimps 
+	      [Unifier_iff,subst_comp,prem RS comp_subst_subst]) 1);
+val Unifier_comp_subst  = store_thm("Unifier_comp_subst", result() RS mp);
+
+(*** The domain of a MGIU is a subset of the variables in the terms ***)
+(***      NB this and one for range are only needed for termination ***)
+
+val [prem] = goal Unifier.thy
+    "~ vars_of(Var(x) <| r) = vars_of(Var(x) <| s) ==> ~r =s= s";
+by (rtac (prem RS contrapos) 1);
+by (fast_tac (set_cs addEs [subst_subst2]) 1);
+qed "lemma_lemma";
+
+val prems = goal Unifier.thy 
+    "x : sdom(s) -->  ~x : srange(s) --> \
+\   ~vars_of(Var(x) <| s<> <x,Var(x)>#s) = \
+\      vars_of(Var(x) <| <x,Var(x)>#s)";
+by (simp_tac (subst_ss addsimps [not_equal_iff]) 1);
+by (REPEAT (resolve_tac [impI,disjI2] 1));
+by(res_inst_tac [("x","x")] exI 1);
+br conjI 1;
+by (asm_simp_tac (subst_ss addsimps [Var_elim,subst_comp,repl_invariance]) 1);
+by (asm_simp_tac (subst_ss addsimps [Var_subst]) 1);
+val MGIU_sdom_lemma = store_thm("MGIU_sdom_lemma", result() RS mp RS mp RS lemma_lemma RS notE);
+
+goal Unifier.thy "MGIUnifier s t u --> sdom(s) <= vars_of(t) Un vars_of(u)";
+by (subgoal_tac "! P Q.(P | Q) = (~( ~P & ~Q))" 1);
+by (asm_simp_tac (subst_ss addsimps [MGIU_iff,Idem_iff,subset_iff]) 1);
+by (safe_tac set_cs);
+by (eresolve_tac ([spec] RL [impE]) 1);
+by (rtac Cons_Unifier 1);
+by (ALLGOALS (fast_tac (set_cs addIs [Cons_Unifier,MGIU_sdom_lemma])));
+val MGIU_sdom  = store_thm("MGIU_sdom", result() RS mp);
+
+(*** The range of a MGIU is a subset of the variables in the terms ***)
+
+val prems = goal HOL.thy  "P = Q ==> (~P) = (~Q)";
+by (simp_tac (set_ss addsimps prems) 1);
+qed "not_cong";
+
+val prems = goal Unifier.thy 
+   "~w=x --> x : vars_of(Var(w) <| s) --> w : sdom(s) --> ~w : srange(s) --> \
+\   ~vars_of(Var(w) <| s<> <x,Var(w)>#s) = \
+\   vars_of(Var(w) <| <x,Var(w)>#s)";
+by (simp_tac (subst_ss addsimps [not_equal_iff]) 1);
+by (REPEAT (resolve_tac [impI,disjI1] 1));
+by(res_inst_tac [("x","w")] exI 1);
+by (ALLGOALS (asm_simp_tac (subst_ss addsimps  [Var_elim,subst_comp,
+                vars_var_iff RS not_cong RS iffD2 RS repl_invariance]) ));
+by (fast_tac (set_cs addIs [Var_in_subst]) 1);
+val MGIU_srange_lemma  = store_thm("MGIU_srange_lemma", result() RS mp RS mp RS mp RS mp RS lemma_lemma RS notE);
+
+goal Unifier.thy "MGIUnifier s t u --> srange(s) <= vars_of(t) Un vars_of(u)";
+by (subgoal_tac "! P Q.(P | Q) = (~( ~P & ~Q))" 1);
+by (asm_simp_tac (subst_ss addsimps [MGIU_iff,srange_iff,subset_iff]) 1);
+by (simp_tac (subst_ss addsimps [Idem_iff]) 1);
+by (safe_tac set_cs);
+by (eresolve_tac ([spec] RL [impE]) 1);
+by (rtac Cons_Unifier 1);
+by (imp_excluded_middle_tac "w=ta" 4);
+by (fast_tac (set_cs addEs [MGIU_srange_lemma]) 5);
+by (ALLGOALS (fast_tac (set_cs addIs [Var_elim2])));
+val MGIU_srange = store_thm("MGIU_srange", result() RS mp);
+
+(*************** Correctness of a simple unification algorithm ***************)
+(*                                                                           *)
+(*  fun unify Const(m) Const(n) = if m=n then Nil else Fail                  *)
+(*    | unify Const(m) _        = Fail                                       *)
+(*    | unify Var(v)   t        = if Var(v)<:t then Fail else <v,t>#Nil      *)
+(*    | unify Comb(t,u) Const(n) = Fail                                      *)
+(*    | unify Comb(t,u) Var(v)  = if Var(v) <: Comb(t,u) then Fail           *)
+(*                                               else <v,Comb(t,u>#Nil       *)
+(*    | unify Comb(t,u) Comb(v,w) = let s = unify t v                        *)
+(*                                  in if s=Fail then Fail                   *)
+(*                                               else unify (u<|s) (w<|s);   *)
+
+(**** Cases for the partial correctness of the algorithm ****)
+
+goalw Unifier.thy unify_defs "MGIUnifier s t u = MGIUnifier s u t";
+by (safe_tac (HOL_cs addSEs ([sym]@([spec] RL [mp]))));
+qed "Unify_comm";
+
+goal Unifier.thy "MGIUnifier [] (Const n) (Const n)";
+by (simp_tac (subst_ss addsimps
+	      [MGIU_iff,MGU_iff,Unifier_iff,subst_eq_iff,Idem_Nil]) 1);
+qed "Unify1";
+
+goal Unifier.thy "~m=n --> (ALL l.~Unifier l (Const m) (Const n))";
+by (simp_tac (subst_ss addsimps[Unifier_iff]) 1);
+val Unify2 = store_thm("Unify2", result() RS mp);
+
+val [prem] = goalw Unifier.thy [MGIUnifier_def] 
+ "~Var(v) <: t ==> MGIUnifier [<v,t>] (Var v) t";
+by (fast_tac (HOL_cs addSIs [prem RS MGUnifier_Var,prem RS Var_Idem]) 1);
+qed "Unify3";
+
+val [prem] = goal Unifier.thy "Var(v) <: t ==> (ALL l.~Unifier l (Var v) t)";
+by (simp_tac (subst_ss addsimps
+	      [Unifier_iff,prem RS subst_mono RS occs_irrefl2]) 1);
+qed "Unify4";
+
+goal Unifier.thy "ALL l.~Unifier l (Const m) (Comb t u)";
+by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
+qed "Unify5";
+
+goal Unifier.thy
+    "(ALL l.~Unifier l t v) --> (ALL l.~Unifier l (Comb t u) (Comb v w))";
+by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
+val Unify6 = store_thm("Unify6", result() RS mp);
+
+goal Unifier.thy "MGIUnifier s t v --> (ALL l.~Unifier l (u <| s) (w <| s)) \
+\                                --> (ALL l.~Unifier l (Comb t u) (Comb v w))";
+by (simp_tac (subst_ss addsimps [MGIU_iff]) 1);
+by (fast_tac (set_cs addIs [Unifier_comp_subst] addSEs [Unifier_Comb]) 1);
+val Unify7 = store_thm("Unify7", result() RS mp RS mp);
+
+val [p1,p2,p3] = goal Unifier.thy
+     "[| Idem(r); Unifier s (t <| r) (u <| r); \
+\     (! q.Unifier q (t <| r) (u <| r) --> s <> q =s= q) |] ==> \
+\     Idem(r <> s)";
+by (cut_facts_tac [p1,
+		   p2 RS (p1 RS Unifier_Idem_subst RS (p3 RS spec RS mp))] 1);
+by (REPEAT_SOME (etac rev_mp));
+by (simp_tac (subst_ss addsimps [raw_Idem_iff,subst_eq_iff,subst_comp]) 1);
+qed "Unify8_lemma1";
+
+val [p1,p2,p3,p4] = goal Unifier.thy
+   "[| Unifier q t v; Unifier q u w; (! q.Unifier q t v --> r <> q =s= q); \
+\      (! q.Unifier q (u <| r) (w <| r) --> s <> q =s= q) |] ==> \
+\   r <> s <> q =s= q";
+val pp = p1 RS (p3 RS spec RS mp);
+by (cut_facts_tac [pp,
+		   p2 RS (pp RS Unifier_comp_subst) RS (p4 RS spec RS mp)] 1);
+by (REPEAT_SOME (etac rev_mp));
+by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1);
+qed "Unify8_lemma2";
+
+goal Unifier.thy  "MGIUnifier r t v -->  MGIUnifier s (u <| r) (w <| r) --> \
+\                MGIUnifier (r <> s) (Comb t u) (Comb v w)";
+by (simp_tac (subst_ss addsimps [MGIU_iff,subst_comp,comp_assoc]) 1);
+by (safe_tac HOL_cs);
+by (REPEAT (etac rev_mp 2));
+by (simp_tac (subst_ss addsimps 
+	      [Unifier_iff,MGIU_iff,subst_comp,comp_assoc]) 2);
+by (ALLGOALS (fast_tac (set_cs addEs 
+			[Unifier_Comb,Unify8_lemma1,Unify8_lemma2])));
+qed "Unify8";
+
+
+(********************** Termination of the algorithm *************************)
+(*                                                                           *)
+(*UWFD is a well-founded relation that orders the 2 recursive calls in unify *)
+(*                   NB well-foundedness of UWFD isn't proved                *)
+
+
+goalw Unifier.thy [UWFD_def]  "UWFD t t' (Comb t u) (Comb t' u')";
+by (simp_tac subst_ss 1);
+by (fast_tac set_cs 1);
+qed "UnifyWFD1";
+
+val [prem] = goal Unifier.thy 
+     "MGIUnifier s t t' ==> vars_of(u <| s) Un vars_of(u' <| s) <= \
+\                           vars_of (Comb t u) Un vars_of (Comb t' u')";
+by (subgoal_tac "vars_of(u <| s) Un vars_of(u' <| s) <= \
+\                srange(s) Un vars_of(u) Un srange(s) Un vars_of(u')" 1);
+by (etac subset_trans 1);
+by (ALLGOALS (simp_tac (subst_ss addsimps [Var_intro,subset_iff])));
+by (ALLGOALS (fast_tac (set_cs addDs 
+			[Var_intro,prem RS MGIU_srange RS subsetD])));
+qed "UWFD2_lemma1";
+
+val [major,minor] = goal Unifier.thy 
+     "[| MGIUnifier s t t';  ~ u <| s = u |] ==> \
+\     ~ vars_of(u <| s) Un vars_of(u' <| s) =  \
+\         (vars_of(t) Un vars_of(u)) Un (vars_of(t') Un vars_of(u'))";
+by (cut_facts_tac 
+    [major RS (MGIU_iff RS iffD1) RS conjunct1 RS (Idem_iff RS iffD1)] 1);
+by (rtac (minor RS subst_not_empty RS exE) 1);
+by (rtac (make_elim ((major RS MGIU_sdom) RS subsetD)) 1 THEN assume_tac 1);
+by (rtac (disjI2 RS (not_equal_iff RS iffD2)) 1);
+by (REPEAT (etac rev_mp 1));
+by (asm_simp_tac subst_ss 1);
+by (fast_tac (set_cs addIs [Var_elim2]) 1);
+qed "UWFD2_lemma2";
+
+val [prem] = goalw Unifier.thy [UWFD_def]  
+  "MGIUnifier s t t' ==> UWFD (u <| s) (u' <| s) (Comb t u) (Comb t' u')";
+by (cut_facts_tac 
+    [prem RS UWFD2_lemma1 RS (subseteq_iff_subset_eq RS iffD1)] 1);
+by (imp_excluded_middle_tac "u <| s = u" 1);
+by (simp_tac (set_ss addsimps [occs_Comb2] ) 1);
+by (rtac impI 1 THEN etac subst 1 THEN assume_tac 1);
+by (rtac impI 1);
+by (rtac (conjI RS (ssubset_iff RS iffD2) RS disjI1) 1);
+by (asm_simp_tac (set_ss addsimps [subseteq_iff_subset_eq]) 1);
+by (asm_simp_tac subst_ss 1);
+by (fast_tac (set_cs addDs [prem RS UWFD2_lemma2]) 1);
+qed "UnifyWFD2";