--- a/src/HOL/Isar_Examples/Basic_Logic.thy Mon Dec 07 10:23:50 2015 +0100
+++ b/src/HOL/Isar_Examples/Basic_Logic.thy Mon Dec 07 10:38:04 2015 +0100
@@ -172,9 +172,9 @@
proof
assume "A \<and> B"
then show "B \<and> A"
- proof -- \<open>rule \<open>conjE\<close> of \<open>A \<and> B\<close>\<close>
+ proof \<comment> \<open>rule \<open>conjE\<close> of \<open>A \<and> B\<close>\<close>
assume B A
- then show ?thesis .. -- \<open>rule \<open>conjI\<close> of \<open>B \<and> A\<close>\<close>
+ then show ?thesis .. \<comment> \<open>rule \<open>conjI\<close> of \<open>B \<and> A\<close>\<close>
qed
qed
@@ -202,7 +202,7 @@
from \<open>A \<and> B\<close> have B ..
from \<open>B\<close> \<open>A\<close> have "B \<and> A" ..
}
- then show ?thesis .. -- \<open>rule \<open>impI\<close>\<close>
+ then show ?thesis .. \<comment> \<open>rule \<open>impI\<close>\<close>
qed
text \<open>
@@ -253,7 +253,7 @@
proof
assume "P \<or> P"
then show P
- proof -- \<open>rule \<open>disjE\<close>: \smash{$\infer{\<open>C\<close>}{\<open>A \<or> B\<close> & \infer*{\<open>C\<close>}{[\<open>A\<close>]} & \infer*{\<open>C\<close>}{[\<open>B\<close>]}}$}\<close>
+ proof \<comment> \<open>rule \<open>disjE\<close>: \smash{$\infer{\<open>C\<close>}{\<open>A \<or> B\<close> & \infer*{\<open>C\<close>}{[\<open>A\<close>]} & \infer*{\<open>C\<close>}{[\<open>B\<close>]}}$}\<close>
assume P show P by fact
next
assume P show P by fact
@@ -322,7 +322,7 @@
proof
assume "\<exists>x. P (f x)"
then show "\<exists>y. P y"
- proof (rule exE) -- \<open>rule \<open>exE\<close>: \smash{$\infer{\<open>B\<close>}{\<open>\<exists>x. A(x)\<close> & \infer*{\<open>B\<close>}{[\<open>A(x)\<close>]_x}}$}\<close>
+ proof (rule exE) \<comment> \<open>rule \<open>exE\<close>: \smash{$\infer{\<open>B\<close>}{\<open>\<exists>x. A(x)\<close> & \infer*{\<open>B\<close>}{[\<open>A(x)\<close>]_x}}$}\<close>
fix a
assume "P (f a)" (is "P ?witness")
then show ?thesis by (rule exI [of P ?witness])