src/HOL/Old_Number_Theory/Chinese.thy
changeset 32479 521cc9bf2958
parent 30242 aea5d7fa7ef5
child 38159 e9b4835a54ee
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Chinese.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,257 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* The Chinese Remainder Theorem *}
+
+theory Chinese 
+imports IntPrimes
+begin
+
+text {*
+  The Chinese Remainder Theorem for an arbitrary finite number of
+  equations.  (The one-equation case is included in theory @{text
+  IntPrimes}.  Uses functions for indexing.\footnote{Maybe @{term
+  funprod} and @{term funsum} should be based on general @{term fold}
+  on indices?}
+*}
+
+
+subsection {* Definitions *}
+
+consts
+  funprod :: "(nat => int) => nat => nat => int"
+  funsum :: "(nat => int) => nat => nat => int"
+
+primrec
+  "funprod f i 0 = f i"
+  "funprod f i (Suc n) = f (Suc (i + n)) * funprod f i n"
+
+primrec
+  "funsum f i 0 = f i"
+  "funsum f i (Suc n) = f (Suc (i + n)) + funsum f i n"
+
+definition
+  m_cond :: "nat => (nat => int) => bool" where
+  "m_cond n mf =
+    ((\<forall>i. i \<le> n --> 0 < mf i) \<and>
+      (\<forall>i j. i \<le> n \<and> j \<le> n \<and> i \<noteq> j --> zgcd (mf i) (mf j) = 1))"
+
+definition
+  km_cond :: "nat => (nat => int) => (nat => int) => bool" where
+  "km_cond n kf mf = (\<forall>i. i \<le> n --> zgcd (kf i) (mf i) = 1)"
+
+definition
+  lincong_sol ::
+    "nat => (nat => int) => (nat => int) => (nat => int) => int => bool" where
+  "lincong_sol n kf bf mf x = (\<forall>i. i \<le> n --> zcong (kf i * x) (bf i) (mf i))"
+
+definition
+  mhf :: "(nat => int) => nat => nat => int" where
+  "mhf mf n i =
+    (if i = 0 then funprod mf (Suc 0) (n - Suc 0)
+     else if i = n then funprod mf 0 (n - Suc 0)
+     else funprod mf 0 (i - Suc 0) * funprod mf (Suc i) (n - Suc 0 - i))"
+
+definition
+  xilin_sol ::
+    "nat => nat => (nat => int) => (nat => int) => (nat => int) => int" where
+  "xilin_sol i n kf bf mf =
+    (if 0 < n \<and> i \<le> n \<and> m_cond n mf \<and> km_cond n kf mf then
+        (SOME x. 0 \<le> x \<and> x < mf i \<and> zcong (kf i * mhf mf n i * x) (bf i) (mf i))
+     else 0)"
+
+definition
+  x_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int" where
+  "x_sol n kf bf mf = funsum (\<lambda>i. xilin_sol i n kf bf mf * mhf mf n i) 0 n"
+
+
+text {* \medskip @{term funprod} and @{term funsum} *}
+
+lemma funprod_pos: "(\<forall>i. i \<le> n --> 0 < mf i) ==> 0 < funprod mf 0 n"
+  apply (induct n)
+   apply auto
+  apply (simp add: zero_less_mult_iff)
+  done
+
+lemma funprod_zgcd [rule_format (no_asm)]:
+  "(\<forall>i. k \<le> i \<and> i \<le> k + l --> zgcd (mf i) (mf m) = 1) -->
+    zgcd (funprod mf k l) (mf m) = 1"
+  apply (induct l)
+   apply simp_all
+  apply (rule impI)+
+  apply (subst zgcd_zmult_cancel)
+  apply auto
+  done
+
+lemma funprod_zdvd [rule_format]:
+    "k \<le> i --> i \<le> k + l --> mf i dvd funprod mf k l"
+  apply (induct l)
+   apply auto
+  apply (subgoal_tac "i = Suc (k + l)")
+   apply (simp_all (no_asm_simp))
+  done
+
+lemma funsum_mod:
+    "funsum f k l mod m = funsum (\<lambda>i. (f i) mod m) k l mod m"
+  apply (induct l)
+   apply auto
+  apply (rule trans)
+   apply (rule mod_add_eq)
+  apply simp
+  apply (rule mod_add_right_eq [symmetric])
+  done
+
+lemma funsum_zero [rule_format (no_asm)]:
+    "(\<forall>i. k \<le> i \<and> i \<le> k + l --> f i = 0) --> (funsum f k l) = 0"
+  apply (induct l)
+   apply auto
+  done
+
+lemma funsum_oneelem [rule_format (no_asm)]:
+  "k \<le> j --> j \<le> k + l -->
+    (\<forall>i. k \<le> i \<and> i \<le> k + l \<and> i \<noteq> j --> f i = 0) -->
+    funsum f k l = f j"
+  apply (induct l)
+   prefer 2
+   apply clarify
+   defer
+   apply clarify
+   apply (subgoal_tac "k = j")
+    apply (simp_all (no_asm_simp))
+  apply (case_tac "Suc (k + l) = j")
+   apply (subgoal_tac "funsum f k l = 0")
+    apply (rule_tac [2] funsum_zero)
+    apply (subgoal_tac [3] "f (Suc (k + l)) = 0")
+     apply (subgoal_tac [3] "j \<le> k + l")
+      prefer 4
+      apply arith
+     apply auto
+  done
+
+
+subsection {* Chinese: uniqueness *}
+
+lemma zcong_funprod_aux:
+  "m_cond n mf ==> km_cond n kf mf
+    ==> lincong_sol n kf bf mf x ==> lincong_sol n kf bf mf y
+    ==> [x = y] (mod mf n)"
+  apply (unfold m_cond_def km_cond_def lincong_sol_def)
+  apply (rule iffD1)
+   apply (rule_tac k = "kf n" in zcong_cancel2)
+    apply (rule_tac [3] b = "bf n" in zcong_trans)
+     prefer 4
+     apply (subst zcong_sym)
+     defer
+     apply (rule order_less_imp_le)
+     apply simp_all
+  done
+
+lemma zcong_funprod [rule_format]:
+  "m_cond n mf --> km_cond n kf mf -->
+    lincong_sol n kf bf mf x --> lincong_sol n kf bf mf y -->
+    [x = y] (mod funprod mf 0 n)"
+  apply (induct n)
+   apply (simp_all (no_asm))
+   apply (blast intro: zcong_funprod_aux)
+  apply (rule impI)+
+  apply (rule zcong_zgcd_zmult_zmod)
+    apply (blast intro: zcong_funprod_aux)
+    prefer 2
+    apply (subst zgcd_commute)
+    apply (rule funprod_zgcd)
+   apply (auto simp add: m_cond_def km_cond_def lincong_sol_def)
+  done
+
+
+subsection {* Chinese: existence *}
+
+lemma unique_xi_sol:
+  "0 < n ==> i \<le> n ==> m_cond n mf ==> km_cond n kf mf
+    ==> \<exists>!x. 0 \<le> x \<and> x < mf i \<and> [kf i * mhf mf n i * x = bf i] (mod mf i)"
+  apply (rule zcong_lineq_unique)
+   apply (tactic {* stac (thm "zgcd_zmult_cancel") 2 *})
+    apply (unfold m_cond_def km_cond_def mhf_def)
+    apply (simp_all (no_asm_simp))
+  apply safe
+    apply (tactic {* stac (thm "zgcd_zmult_cancel") 3 *})
+     apply (rule_tac [!] funprod_zgcd)
+     apply safe
+     apply simp_all
+   apply (subgoal_tac "i<n")
+    prefer 2
+    apply arith
+   apply (case_tac [2] i)
+    apply simp_all
+  done
+
+lemma x_sol_lin_aux:
+    "0 < n ==> i \<le> n ==> j \<le> n ==> j \<noteq> i ==> mf j dvd mhf mf n i"
+  apply (unfold mhf_def)
+  apply (case_tac "i = 0")
+   apply (case_tac [2] "i = n")
+    apply (simp_all (no_asm_simp))
+    apply (case_tac [3] "j < i")
+     apply (rule_tac [3] dvd_mult2)
+     apply (rule_tac [4] dvd_mult)
+     apply (rule_tac [!] funprod_zdvd)
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+  done
+
+lemma x_sol_lin:
+  "0 < n ==> i \<le> n
+    ==> x_sol n kf bf mf mod mf i =
+      xilin_sol i n kf bf mf * mhf mf n i mod mf i"
+  apply (unfold x_sol_def)
+  apply (subst funsum_mod)
+  apply (subst funsum_oneelem)
+     apply auto
+  apply (subst dvd_eq_mod_eq_0 [symmetric])
+  apply (rule dvd_mult)
+  apply (rule x_sol_lin_aux)
+  apply auto
+  done
+
+
+subsection {* Chinese *}
+
+lemma chinese_remainder:
+  "0 < n ==> m_cond n mf ==> km_cond n kf mf
+    ==> \<exists>!x. 0 \<le> x \<and> x < funprod mf 0 n \<and> lincong_sol n kf bf mf x"
+  apply safe
+   apply (rule_tac [2] m = "funprod mf 0 n" in zcong_zless_imp_eq)
+       apply (rule_tac [6] zcong_funprod)
+          apply auto
+  apply (rule_tac x = "x_sol n kf bf mf mod funprod mf 0 n" in exI)
+  apply (unfold lincong_sol_def)
+  apply safe
+    apply (tactic {* stac (thm "zcong_zmod") 3 *})
+    apply (tactic {* stac (thm "mod_mult_eq") 3 *})
+    apply (tactic {* stac (thm "mod_mod_cancel") 3 *})
+      apply (tactic {* stac (thm "x_sol_lin") 4 *})
+        apply (tactic {* stac (thm "mod_mult_eq" RS sym) 6 *})
+        apply (tactic {* stac (thm "zcong_zmod" RS sym) 6 *})
+        apply (subgoal_tac [6]
+          "0 \<le> xilin_sol i n kf bf mf \<and> xilin_sol i n kf bf mf < mf i
+          \<and> [kf i * mhf mf n i * xilin_sol i n kf bf mf = bf i] (mod mf i)")
+         prefer 6
+         apply (simp add: zmult_ac)
+        apply (unfold xilin_sol_def)
+        apply (tactic {* asm_simp_tac @{simpset} 6 *})
+        apply (rule_tac [6] ex1_implies_ex [THEN someI_ex])
+        apply (rule_tac [6] unique_xi_sol)
+           apply (rule_tac [3] funprod_zdvd)
+            apply (unfold m_cond_def)
+            apply (rule funprod_pos [THEN pos_mod_sign])
+            apply (rule_tac [2] funprod_pos [THEN pos_mod_bound])
+            apply auto
+  done
+
+end