src/HOL/Old_Number_Theory/EulerFermat.thy
changeset 32479 521cc9bf2958
parent 30042 31039ee583fa
child 32960 69916a850301
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/EulerFermat.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,346 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* Fermat's Little Theorem extended to Euler's Totient function *}
+
+theory EulerFermat
+imports BijectionRel IntFact
+begin
+
+text {*
+  Fermat's Little Theorem extended to Euler's Totient function. More
+  abstract approach than Boyer-Moore (which seems necessary to achieve
+  the extended version).
+*}
+
+
+subsection {* Definitions and lemmas *}
+
+inductive_set
+  RsetR :: "int => int set set"
+  for m :: int
+  where
+    empty [simp]: "{} \<in> RsetR m"
+  | insert: "A \<in> RsetR m ==> zgcd a m = 1 ==>
+      \<forall>a'. a' \<in> A --> \<not> zcong a a' m ==> insert a A \<in> RsetR m"
+
+consts
+  BnorRset :: "int * int => int set"
+
+recdef BnorRset
+  "measure ((\<lambda>(a, m). nat a) :: int * int => nat)"
+  "BnorRset (a, m) =
+   (if 0 < a then
+    let na = BnorRset (a - 1, m)
+    in (if zgcd a m = 1 then insert a na else na)
+    else {})"
+
+definition
+  norRRset :: "int => int set" where
+  "norRRset m = BnorRset (m - 1, m)"
+
+definition
+  noXRRset :: "int => int => int set" where
+  "noXRRset m x = (\<lambda>a. a * x) ` norRRset m"
+
+definition
+  phi :: "int => nat" where
+  "phi m = card (norRRset m)"
+
+definition
+  is_RRset :: "int set => int => bool" where
+  "is_RRset A m = (A \<in> RsetR m \<and> card A = phi m)"
+
+definition
+  RRset2norRR :: "int set => int => int => int" where
+  "RRset2norRR A m a =
+     (if 1 < m \<and> is_RRset A m \<and> a \<in> A then
+        SOME b. zcong a b m \<and> b \<in> norRRset m
+      else 0)"
+
+definition
+  zcongm :: "int => int => int => bool" where
+  "zcongm m = (\<lambda>a b. zcong a b m)"
+
+lemma abs_eq_1_iff [iff]: "(abs z = (1::int)) = (z = 1 \<or> z = -1)"
+  -- {* LCP: not sure why this lemma is needed now *}
+  by (auto simp add: abs_if)
+
+
+text {* \medskip @{text norRRset} *}
+
+declare BnorRset.simps [simp del]
+
+lemma BnorRset_induct:
+  assumes "!!a m. P {} a m"
+    and "!!a m. 0 < (a::int) ==> P (BnorRset (a - 1, m::int)) (a - 1) m
+      ==> P (BnorRset(a,m)) a m"
+  shows "P (BnorRset(u,v)) u v"
+  apply (rule BnorRset.induct)
+  apply safe
+   apply (case_tac [2] "0 < a")
+    apply (rule_tac [2] prems)
+     apply simp_all
+   apply (simp_all add: BnorRset.simps prems)
+  done
+
+lemma Bnor_mem_zle [rule_format]: "b \<in> BnorRset (a, m) \<longrightarrow> b \<le> a"
+  apply (induct a m rule: BnorRset_induct)
+   apply simp
+  apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  done
+
+lemma Bnor_mem_zle_swap: "a < b ==> b \<notin> BnorRset (a, m)"
+  by (auto dest: Bnor_mem_zle)
+
+lemma Bnor_mem_zg [rule_format]: "b \<in> BnorRset (a, m) --> 0 < b"
+  apply (induct a m rule: BnorRset_induct)
+   prefer 2
+   apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  done
+
+lemma Bnor_mem_if [rule_format]:
+    "zgcd b m = 1 --> 0 < b --> b \<le> a --> b \<in> BnorRset (a, m)"
+  apply (induct a m rule: BnorRset.induct, auto)
+   apply (subst BnorRset.simps)
+   defer
+   apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  done
+
+lemma Bnor_in_RsetR [rule_format]: "a < m --> BnorRset (a, m) \<in> RsetR m"
+  apply (induct a m rule: BnorRset_induct, simp)
+  apply (subst BnorRset.simps)
+  apply (unfold Let_def, auto)
+  apply (rule RsetR.insert)
+    apply (rule_tac [3] allI)
+    apply (rule_tac [3] impI)
+    apply (rule_tac [3] zcong_not)
+       apply (subgoal_tac [6] "a' \<le> a - 1")
+        apply (rule_tac [7] Bnor_mem_zle)
+        apply (rule_tac [5] Bnor_mem_zg, auto)
+  done
+
+lemma Bnor_fin: "finite (BnorRset (a, m))"
+  apply (induct a m rule: BnorRset_induct)
+   prefer 2
+   apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  done
+
+lemma norR_mem_unique_aux: "a \<le> b - 1 ==> a < (b::int)"
+  apply auto
+  done
+
+lemma norR_mem_unique:
+  "1 < m ==>
+    zgcd a m = 1 ==> \<exists>!b. [a = b] (mod m) \<and> b \<in> norRRset m"
+  apply (unfold norRRset_def)
+  apply (cut_tac a = a and m = m in zcong_zless_unique, auto)
+   apply (rule_tac [2] m = m in zcong_zless_imp_eq)
+       apply (auto intro: Bnor_mem_zle Bnor_mem_zg zcong_trans
+	 order_less_imp_le norR_mem_unique_aux simp add: zcong_sym)
+  apply (rule_tac x = b in exI, safe)
+  apply (rule Bnor_mem_if)
+    apply (case_tac [2] "b = 0")
+     apply (auto intro: order_less_le [THEN iffD2])
+   prefer 2
+   apply (simp only: zcong_def)
+   apply (subgoal_tac "zgcd a m = m")
+    prefer 2
+    apply (subst zdvd_iff_zgcd [symmetric])
+     apply (rule_tac [4] zgcd_zcong_zgcd)
+       apply (simp_all add: zcong_sym)
+  done
+
+
+text {* \medskip @{term noXRRset} *}
+
+lemma RRset_gcd [rule_format]:
+    "is_RRset A m ==> a \<in> A --> zgcd a m = 1"
+  apply (unfold is_RRset_def)
+  apply (rule RsetR.induct [where P="%A. a \<in> A --> zgcd a m = 1"], auto)
+  done
+
+lemma RsetR_zmult_mono:
+  "A \<in> RsetR m ==>
+    0 < m ==> zgcd x m = 1 ==> (\<lambda>a. a * x) ` A \<in> RsetR m"
+  apply (erule RsetR.induct, simp_all)
+  apply (rule RsetR.insert, auto)
+   apply (blast intro: zgcd_zgcd_zmult)
+  apply (simp add: zcong_cancel)
+  done
+
+lemma card_nor_eq_noX:
+  "0 < m ==>
+    zgcd x m = 1 ==> card (noXRRset m x) = card (norRRset m)"
+  apply (unfold norRRset_def noXRRset_def)
+  apply (rule card_image)
+   apply (auto simp add: inj_on_def Bnor_fin)
+  apply (simp add: BnorRset.simps)
+  done
+
+lemma noX_is_RRset:
+    "0 < m ==> zgcd x m = 1 ==> is_RRset (noXRRset m x) m"
+  apply (unfold is_RRset_def phi_def)
+  apply (auto simp add: card_nor_eq_noX)
+  apply (unfold noXRRset_def norRRset_def)
+  apply (rule RsetR_zmult_mono)
+    apply (rule Bnor_in_RsetR, simp_all)
+  done
+
+lemma aux_some:
+  "1 < m ==> is_RRset A m ==> a \<in> A
+    ==> zcong a (SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) m \<and>
+      (SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) \<in> norRRset m"
+  apply (rule norR_mem_unique [THEN ex1_implies_ex, THEN someI_ex])
+   apply (rule_tac [2] RRset_gcd, simp_all)
+  done
+
+lemma RRset2norRR_correct:
+  "1 < m ==> is_RRset A m ==> a \<in> A ==>
+    [a = RRset2norRR A m a] (mod m) \<and> RRset2norRR A m a \<in> norRRset m"
+  apply (unfold RRset2norRR_def, simp)
+  apply (rule aux_some, simp_all)
+  done
+
+lemmas RRset2norRR_correct1 =
+  RRset2norRR_correct [THEN conjunct1, standard]
+lemmas RRset2norRR_correct2 =
+  RRset2norRR_correct [THEN conjunct2, standard]
+
+lemma RsetR_fin: "A \<in> RsetR m ==> finite A"
+  by (induct set: RsetR) auto
+
+lemma RRset_zcong_eq [rule_format]:
+  "1 < m ==>
+    is_RRset A m ==> [a = b] (mod m) ==> a \<in> A --> b \<in> A --> a = b"
+  apply (unfold is_RRset_def)
+  apply (rule RsetR.induct [where P="%A. a \<in> A --> b \<in> A --> a = b"])
+    apply (auto simp add: zcong_sym)
+  done
+
+lemma aux:
+  "P (SOME a. P a) ==> Q (SOME a. Q a) ==>
+    (SOME a. P a) = (SOME a. Q a) ==> \<exists>a. P a \<and> Q a"
+  apply auto
+  done
+
+lemma RRset2norRR_inj:
+    "1 < m ==> is_RRset A m ==> inj_on (RRset2norRR A m) A"
+  apply (unfold RRset2norRR_def inj_on_def, auto)
+  apply (subgoal_tac "\<exists>b. ([x = b] (mod m) \<and> b \<in> norRRset m) \<and>
+      ([y = b] (mod m) \<and> b \<in> norRRset m)")
+   apply (rule_tac [2] aux)
+     apply (rule_tac [3] aux_some)
+       apply (rule_tac [2] aux_some)
+         apply (rule RRset_zcong_eq, auto)
+  apply (rule_tac b = b in zcong_trans)
+   apply (simp_all add: zcong_sym)
+  done
+
+lemma RRset2norRR_eq_norR:
+    "1 < m ==> is_RRset A m ==> RRset2norRR A m ` A = norRRset m"
+  apply (rule card_seteq)
+    prefer 3
+    apply (subst card_image)
+      apply (rule_tac RRset2norRR_inj, auto)
+     apply (rule_tac [3] RRset2norRR_correct2, auto)
+    apply (unfold is_RRset_def phi_def norRRset_def)
+    apply (auto simp add: Bnor_fin)
+  done
+
+
+lemma Bnor_prod_power_aux: "a \<notin> A ==> inj f ==> f a \<notin> f ` A"
+by (unfold inj_on_def, auto)
+
+lemma Bnor_prod_power [rule_format]:
+  "x \<noteq> 0 ==> a < m --> \<Prod>((\<lambda>a. a * x) ` BnorRset (a, m)) =
+      \<Prod>(BnorRset(a, m)) * x^card (BnorRset (a, m))"
+  apply (induct a m rule: BnorRset_induct)
+   prefer 2
+   apply (simplesubst BnorRset.simps)  --{*multiple redexes*}
+   apply (unfold Let_def, auto)
+  apply (simp add: Bnor_fin Bnor_mem_zle_swap)
+  apply (subst setprod_insert)
+    apply (rule_tac [2] Bnor_prod_power_aux)
+     apply (unfold inj_on_def)
+     apply (simp_all add: zmult_ac Bnor_fin finite_imageI
+       Bnor_mem_zle_swap)
+  done
+
+
+subsection {* Fermat *}
+
+lemma bijzcong_zcong_prod:
+    "(A, B) \<in> bijR (zcongm m) ==> [\<Prod>A = \<Prod>B] (mod m)"
+  apply (unfold zcongm_def)
+  apply (erule bijR.induct)
+   apply (subgoal_tac [2] "a \<notin> A \<and> b \<notin> B \<and> finite A \<and> finite B")
+    apply (auto intro: fin_bijRl fin_bijRr zcong_zmult)
+  done
+
+lemma Bnor_prod_zgcd [rule_format]:
+    "a < m --> zgcd (\<Prod>(BnorRset(a, m))) m = 1"
+  apply (induct a m rule: BnorRset_induct)
+   prefer 2
+   apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  apply (simp add: Bnor_fin Bnor_mem_zle_swap)
+  apply (blast intro: zgcd_zgcd_zmult)
+  done
+
+theorem Euler_Fermat:
+    "0 < m ==> zgcd x m = 1 ==> [x^(phi m) = 1] (mod m)"
+  apply (unfold norRRset_def phi_def)
+  apply (case_tac "x = 0")
+   apply (case_tac [2] "m = 1")
+    apply (rule_tac [3] iffD1)
+     apply (rule_tac [3] k = "\<Prod>(BnorRset(m - 1, m))"
+       in zcong_cancel2)
+      prefer 5
+      apply (subst Bnor_prod_power [symmetric])
+        apply (rule_tac [7] Bnor_prod_zgcd, simp_all)
+  apply (rule bijzcong_zcong_prod)
+  apply (fold norRRset_def noXRRset_def)
+  apply (subst RRset2norRR_eq_norR [symmetric])
+    apply (rule_tac [3] inj_func_bijR, auto)
+     apply (unfold zcongm_def)
+     apply (rule_tac [2] RRset2norRR_correct1)
+       apply (rule_tac [5] RRset2norRR_inj)
+        apply (auto intro: order_less_le [THEN iffD2]
+	   simp add: noX_is_RRset)
+  apply (unfold noXRRset_def norRRset_def)
+  apply (rule finite_imageI)
+  apply (rule Bnor_fin)
+  done
+
+lemma Bnor_prime:
+  "\<lbrakk> zprime p; a < p \<rbrakk> \<Longrightarrow> card (BnorRset (a, p)) = nat a"
+  apply (induct a p rule: BnorRset.induct)
+  apply (subst BnorRset.simps)
+  apply (unfold Let_def, auto simp add:zless_zprime_imp_zrelprime)
+  apply (subgoal_tac "finite (BnorRset (a - 1,m))")
+   apply (subgoal_tac "a ~: BnorRset (a - 1,m)")
+    apply (auto simp add: card_insert_disjoint Suc_nat_eq_nat_zadd1)
+   apply (frule Bnor_mem_zle, arith)
+  apply (frule Bnor_fin)
+  done
+
+lemma phi_prime: "zprime p ==> phi p = nat (p - 1)"
+  apply (unfold phi_def norRRset_def)
+  apply (rule Bnor_prime, auto)
+  done
+
+theorem Little_Fermat:
+    "zprime p ==> \<not> p dvd x ==> [x^(nat (p - 1)) = 1] (mod p)"
+  apply (subst phi_prime [symmetric])
+   apply (rule_tac [2] Euler_Fermat)
+    apply (erule_tac [3] zprime_imp_zrelprime)
+    apply (unfold zprime_def, auto)
+  done
+
+end