doc-src/TutorialI/Sets/sets.tex
changeset 13814 5402c2eaf393
parent 13439 2f98365f57a8
child 14393 71dff3bade66
--- a/doc-src/TutorialI/Sets/sets.tex	Mon Feb 10 09:45:22 2003 +0100
+++ b/doc-src/TutorialI/Sets/sets.tex	Mon Feb 10 15:57:46 2003 +0100
@@ -377,12 +377,12 @@
 \isa{\isacharbraceleft x.\ P\ x\isacharbraceright}.  The same thing can
 happen with quantifiers:   \hbox{\isa{All\ P}}\index{*All (constant)}
 is 
-\isa{{\isasymforall}z.\ P\ x} and 
-\hbox{\isa{Ex\ P}}\index{*Ex (constant)} is \isa{\isasymexists z.\ P\ x}; 
+\isa{{\isasymforall}x.\ P\ x} and 
+\hbox{\isa{Ex\ P}}\index{*Ex (constant)} is \isa{\isasymexists x.\ P\ x}; 
 also \isa{Ball\ A\ P}\index{*Ball (constant)} is 
-\isa{{\isasymforall}z\isasymin A.\ P\ x} and 
+\isa{{\isasymforall}x\isasymin A.\ P\ x} and 
 \isa{Bex\ A\ P}\index{*Bex (constant)} is 
-\isa{\isasymexists z\isasymin A.\ P\ x}.  For indexed unions and
+\isa{\isasymexists x\isasymin A.\ P\ x}.  For indexed unions and
 intersections, you may see the constants 
 \cdx{UNION} and  \cdx{INTER}\@.
 The internal constant for $\varepsilon x.P(x)$ is~\cdx{Eps}.