--- a/doc-src/TutorialI/Sets/sets.tex Mon Feb 10 09:45:22 2003 +0100
+++ b/doc-src/TutorialI/Sets/sets.tex Mon Feb 10 15:57:46 2003 +0100
@@ -377,12 +377,12 @@
\isa{\isacharbraceleft x.\ P\ x\isacharbraceright}. The same thing can
happen with quantifiers: \hbox{\isa{All\ P}}\index{*All (constant)}
is
-\isa{{\isasymforall}z.\ P\ x} and
-\hbox{\isa{Ex\ P}}\index{*Ex (constant)} is \isa{\isasymexists z.\ P\ x};
+\isa{{\isasymforall}x.\ P\ x} and
+\hbox{\isa{Ex\ P}}\index{*Ex (constant)} is \isa{\isasymexists x.\ P\ x};
also \isa{Ball\ A\ P}\index{*Ball (constant)} is
-\isa{{\isasymforall}z\isasymin A.\ P\ x} and
+\isa{{\isasymforall}x\isasymin A.\ P\ x} and
\isa{Bex\ A\ P}\index{*Bex (constant)} is
-\isa{\isasymexists z\isasymin A.\ P\ x}. For indexed unions and
+\isa{\isasymexists x\isasymin A.\ P\ x}. For indexed unions and
intersections, you may see the constants
\cdx{UNION} and \cdx{INTER}\@.
The internal constant for $\varepsilon x.P(x)$ is~\cdx{Eps}.