--- a/src/HOL/Library/Countable_Set.thy Tue Jul 01 20:51:26 2025 +0200
+++ b/src/HOL/Library/Countable_Set.thy Thu Jul 03 13:53:14 2025 +0200
@@ -47,7 +47,7 @@
by (blast intro: countableI_bij1 countableI_bij2)
lemma countable_subset: "A \<subseteq> B \<Longrightarrow> countable B \<Longrightarrow> countable A"
- by (auto simp: countable_def intro: subset_inj_on)
+ by (auto simp: countable_def intro: inj_on_subset)
lemma countableI_type[intro, simp]: "countable (A:: 'a :: countable set)"
using countableI[of to_nat A] by auto
@@ -211,7 +211,7 @@
moreover have "inj_on (inv_into A f) (f`A)" "inv_into A f ` f ` A \<subseteq> A"
by (auto intro: inj_on_inv_into inv_into_into)
ultimately show ?thesis
- by (blast dest: comp_inj_on subset_inj_on intro: countableI)
+ by (blast dest: comp_inj_on inj_on_subset intro: countableI)
qed
lemma countable_image_inj_on: "countable (f ` A) \<Longrightarrow> inj_on f A \<Longrightarrow> countable A"