--- a/src/HOL/Library/Univ_Poly.thy Thu Mar 12 15:31:44 2009 +0100
+++ b/src/HOL/Library/Univ_Poly.thy Thu Mar 12 08:57:03 2009 -0700
@@ -19,7 +19,7 @@
text{*addition*}
-primrec (in semiring_0) padd :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "+++" 65)
+primrec (in semiring_0) padd :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "+++" 65)
where
padd_Nil: "[] +++ l2 = l2"
| padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t
@@ -79,7 +79,7 @@
~ (([-a, 1] %^ (Suc n)) divides p))"
--{*degree of a polynomial*}
-definition (in semiring_0) degree :: "'a list => nat" where
+definition (in semiring_0) degree :: "'a list => nat" where
"degree p = length (pnormalize p) - 1"
--{*squarefree polynomials --- NB with respect to real roots only.*}
@@ -140,12 +140,12 @@
proof(induct p1 arbitrary: p2)
case Nil thus ?case by simp
next
- case (Cons a as p2) thus ?case
+ case (Cons a as p2) thus ?case
by (cases p2, simp_all add: add_ac right_distrib)
qed
lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x"
-apply (induct "p")
+apply (induct "p")
apply (case_tac [2] "x=zero")
apply (auto simp add: right_distrib mult_ac)
done
@@ -163,7 +163,7 @@
case Nil thus ?case by simp
next
case (Cons a as p2)
- thus ?case by (cases as,
+ thus ?case by (cases as,
simp_all add: poly_cmult poly_add left_distrib right_distrib mult_ac)
qed
@@ -213,11 +213,11 @@
thus ?case by blast
next
case (Cons x xs)
- {fix h
- from Cons.hyps[rule_format, of x]
+ {fix h
+ from Cons.hyps[rule_format, of x]
obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
- have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)"
- using qr by(cases q, simp_all add: algebra_simps diff_def[symmetric]
+ have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)"
+ using qr by(cases q, simp_all add: algebra_simps diff_def[symmetric]
minus_mult_left[symmetric] right_minus)
hence "\<exists>q r. h#x#xs = [r] +++ [-a, 1] *** q" by blast}
thus ?case by blast
@@ -232,11 +232,11 @@
{assume p: "p = []" hence ?thesis by simp}
moreover
{fix x xs assume p: "p = x#xs"
- {fix q assume "p = [-a, 1] *** q" hence "poly p a = 0"
+ {fix q assume "p = [-a, 1] *** q" hence "poly p a = 0"
by (simp add: poly_add poly_cmult minus_mult_left[symmetric])}
moreover
{assume p0: "poly p a = 0"
- from poly_linear_rem[of x xs a] obtain q r
+ from poly_linear_rem[of x xs a] obtain q r
where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
have "r = 0" using p0 by (simp only: p qr poly_mult poly_add) simp
hence "\<exists>q. p = [- a, 1] *** q" using p qr apply - apply (rule exI[where x=q])apply auto apply (cases q) apply auto done}
@@ -266,7 +266,7 @@
lemma (in semiring_0) poly_root_mult_length[simp]: "length([a,b] *** p) = Suc (length p)"
by (simp add: poly_add_length)
-lemma (in idom) poly_mult_not_eq_poly_Nil[simp]:
+lemma (in idom) poly_mult_not_eq_poly_Nil[simp]:
"poly (p *** q) x \<noteq> poly [] x \<longleftrightarrow> poly p x \<noteq> poly [] x \<and> poly q x \<noteq> poly [] x"
by (auto simp add: poly_mult)
@@ -280,31 +280,31 @@
text{*A nontrivial polynomial of degree n has no more than n roots*}
lemma (in idom) poly_roots_index_lemma:
- assumes p: "poly p x \<noteq> poly [] x" and n: "length p = n"
+ assumes p: "poly p x \<noteq> poly [] x" and n: "length p = n"
shows "\<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)"
using p n
proof(induct n arbitrary: p x)
- case 0 thus ?case by simp
+ case 0 thus ?case by simp
next
case (Suc n p x)
{assume C: "\<And>i. \<exists>x. poly p x = 0 \<and> (\<forall>m\<le>Suc n. x \<noteq> i m)"
from Suc.prems have p0: "poly p x \<noteq> 0" "p\<noteq> []" by auto
- from p0(1)[unfolded poly_linear_divides[of p x]]
+ from p0(1)[unfolded poly_linear_divides[of p x]]
have "\<forall>q. p \<noteq> [- x, 1] *** q" by blast
from C obtain a where a: "poly p a = 0" by blast
- from a[unfolded poly_linear_divides[of p a]] p0(2)
+ from a[unfolded poly_linear_divides[of p a]] p0(2)
obtain q where q: "p = [-a, 1] *** q" by blast
have lg: "length q = n" using q Suc.prems(2) by simp
- from q p0 have qx: "poly q x \<noteq> poly [] x"
+ from q p0 have qx: "poly q x \<noteq> poly [] x"
by (auto simp add: poly_mult poly_add poly_cmult)
- from Suc.hyps[OF qx lg] obtain i where
+ from Suc.hyps[OF qx lg] obtain i where
i: "\<forall>x. poly q x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)" by blast
let ?i = "\<lambda>m. if m = Suc n then a else i m"
- from C[of ?i] obtain y where y: "poly p y = 0" "\<forall>m\<le> Suc n. y \<noteq> ?i m"
+ from C[of ?i] obtain y where y: "poly p y = 0" "\<forall>m\<le> Suc n. y \<noteq> ?i m"
by blast
- from y have "y = a \<or> poly q y = 0"
+ from y have "y = a \<or> poly q y = 0"
by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: algebra_simps)
- with i[rule_format, of y] y(1) y(2) have False apply auto
+ with i[rule_format, of y] y(1) y(2) have False apply auto
apply (erule_tac x="m" in allE)
apply auto
done}
@@ -320,7 +320,7 @@
\<exists>N i. \<forall>x. (poly p x = 0) --> (\<exists>n. (n::nat) < N & x = i n)"
apply (drule poly_roots_index_length, safe)
apply (rule_tac x = "Suc (length p)" in exI)
-apply (rule_tac x = i in exI)
+apply (rule_tac x = i in exI)
apply (simp add: less_Suc_eq_le)
done
@@ -344,8 +344,8 @@
apply (erule_tac x="x" in allE, clarsimp)
by (case_tac "n=length p", auto simp add: order_le_less)
-lemma (in ring_char_0) UNIV_ring_char_0_infinte:
- "\<not> (finite (UNIV:: 'a set))"
+lemma (in ring_char_0) UNIV_ring_char_0_infinte:
+ "\<not> (finite (UNIV:: 'a set))"
proof
assume F: "finite (UNIV :: 'a set)"
have "finite (UNIV :: nat set)"
@@ -357,7 +357,7 @@
with infinite_UNIV_nat show False ..
qed
-lemma (in idom_char_0) poly_roots_finite: "(poly p \<noteq> poly []) =
+lemma (in idom_char_0) poly_roots_finite: "(poly p \<noteq> poly []) =
finite {x. poly p x = 0}"
proof
assume H: "poly p \<noteq> poly []"
@@ -370,7 +370,7 @@
using finite_subset
proof-
fix x i
- assume F: "\<not> finite {x. poly p x = (0\<Colon>'a)}"
+ assume F: "\<not> finite {x. poly p x = (0\<Colon>'a)}"
and P: "\<forall>x. poly p x = (0\<Colon>'a) \<longrightarrow> x \<in> set i"
let ?M= "{x. poly p x = (0\<Colon>'a)}"
from P have "?M \<subseteq> set i" by auto
@@ -378,12 +378,12 @@
qed
next
assume F: "finite {x. poly p x = (0\<Colon>'a)}"
- show "poly p \<noteq> poly []" using F UNIV_ring_char_0_infinte by auto
+ show "poly p \<noteq> poly []" using F UNIV_ring_char_0_infinte by auto
qed
text{*Entirety and Cancellation for polynomials*}
-lemma (in idom_char_0) poly_entire_lemma2:
+lemma (in idom_char_0) poly_entire_lemma2:
assumes p0: "poly p \<noteq> poly []" and q0: "poly q \<noteq> poly []"
shows "poly (p***q) \<noteq> poly []"
proof-
@@ -392,7 +392,7 @@
with p0 q0 show ?thesis unfolding poly_roots_finite by auto
qed
-lemma (in idom_char_0) poly_entire:
+lemma (in idom_char_0) poly_entire:
"poly (p *** q) = poly [] \<longleftrightarrow> poly p = poly [] \<or> poly q = poly []"
using poly_entire_lemma2[of p q]
by (auto simp add: expand_fun_eq poly_mult)
@@ -420,8 +420,8 @@
lemma (in recpower_idom) poly_exp_eq_zero[simp]:
"(poly (p %^ n) = poly []) = (poly p = poly [] & n \<noteq> 0)"
-apply (simp only: fun_eq add: all_simps [symmetric])
-apply (rule arg_cong [where f = All])
+apply (simp only: fun_eq add: all_simps [symmetric])
+apply (rule arg_cong [where f = All])
apply (rule ext)
apply (induct n)
apply (auto simp add: poly_exp poly_mult)
@@ -435,7 +435,7 @@
apply (subst add_commute)
apply (subst add_assoc)
apply simp
-done
+done
lemma (in recpower_idom) poly_exp_prime_eq_zero: "(poly ([a, 1] %^ n) \<noteq> poly [])"
by auto
@@ -445,8 +445,8 @@
lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] ==> h = 0 & poly t = poly []"
apply(simp add: fun_eq)
apply (case_tac "h = zero")
-apply (drule_tac [2] x = zero in spec, auto)
-apply (cases "poly t = poly []", simp)
+apply (drule_tac [2] x = zero in spec, auto)
+apply (cases "poly t = poly []", simp)
proof-
fix x
assume H: "\<forall>x. x = (0\<Colon>'a) \<or> poly t x = (0\<Colon>'a)" and pnz: "poly t \<noteq> poly []"
@@ -563,17 +563,17 @@
{assume p0: "poly p a = 0"
from Suc.prems have h: "length p = Suc n" "poly p \<noteq> poly []" by auto
hence pN: "p \<noteq> []" by auto
- from p0[unfolded poly_linear_divides] pN obtain q where
+ from p0[unfolded poly_linear_divides] pN obtain q where
q: "p = [-a, 1] *** q" by blast
- from q h p0 have qh: "length q = n" "poly q \<noteq> poly []"
+ from q h p0 have qh: "length q = n" "poly q \<noteq> poly []"
apply -
apply simp
apply (simp only: fun_eq)
apply (rule ccontr)
apply (simp add: fun_eq poly_add poly_cmult minus_mult_left[symmetric])
done
- from Suc.hyps[OF qh] obtain m r where
- mr: "q = mulexp m [-a,1] r" "poly r a \<noteq> 0" by blast
+ from Suc.hyps[OF qh] obtain m r where
+ mr: "q = mulexp m [-a,1] r" "poly r a \<noteq> 0" by blast
from mr q have "p = mulexp (Suc m) [-a,1] r \<and> poly r a \<noteq> 0" by simp
hence ?case by blast}
moreover
@@ -600,7 +600,7 @@
(* FIXME: Tidy up *)
-lemma (in recpower_semiring_1)
+lemma (in recpower_semiring_1)
zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)"
by (induct n, simp_all add: power_Suc)
@@ -614,15 +614,15 @@
from lp p0
show ?thesis
apply -
-apply (drule poly_order_exists_lemma [where a=a], assumption, clarify)
+apply (drule poly_order_exists_lemma [where a=a], assumption, clarify)
apply (rule_tac x = n in exI, safe)
apply (unfold divides_def)
apply (rule_tac x = q in exI)
apply (induct_tac "n", simp)
apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult right_distrib mult_ac)
apply safe
-apply (subgoal_tac "?poly (?mulexp n [uminus a, one] q) \<noteq> ?poly (pmult (?pexp [uminus a, one] (Suc n)) qa)")
-apply simp
+apply (subgoal_tac "?poly (?mulexp n [uminus a, one] q) \<noteq> ?poly (pmult (?pexp [uminus a, one] (Suc n)) qa)")
+apply simp
apply (induct_tac "n")
apply (simp del: pmult_Cons pexp_Suc)
apply (erule_tac Q = "?poly q a = zero" in contrapos_np)
@@ -670,7 +670,7 @@
lemma (in recpower_idom_char_0) order_unique: "[| poly p \<noteq> poly []; ([-a, 1] %^ n) divides p;
~(([-a, 1] %^ (Suc n)) divides p)
|] ==> (n = order a p)"
-by (insert order [of a n p], auto)
+by (insert order [of a n p], auto)
lemma (in recpower_idom_char_0) order_unique_lemma: "(poly p \<noteq> poly [] & ([-a, 1] %^ n) divides p &
~(([-a, 1] %^ (Suc n)) divides p))
@@ -695,7 +695,7 @@
lemma (in recpower_idom_char_0) order_root: "(poly p a = 0) = ((poly p = poly []) | order a p \<noteq> 0)"
proof-
let ?poly = poly
- show ?thesis
+ show ?thesis
apply (case_tac "?poly p = ?poly []", auto)
apply (simp add: poly_linear_divides del: pmult_Cons, safe)
apply (drule_tac [!] a = a in order2)
@@ -709,7 +709,7 @@
lemma (in recpower_idom_char_0) order_divides: "(([-a, 1] %^ n) divides p) = ((poly p = poly []) | n \<le> order a p)"
proof-
let ?poly = poly
- show ?thesis
+ show ?thesis
apply (case_tac "?poly p = ?poly []", auto)
apply (simp add: divides_def fun_eq poly_mult)
apply (rule_tac x = "[]" in exI)
@@ -753,14 +753,14 @@
apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons)
done
-lemma (in recpower_idom_char_0) order_mult:
+lemma (in recpower_idom_char_0) order_mult:
assumes pq0: "poly (p *** q) \<noteq> poly []"
shows "order a (p *** q) = order a p + order a q"
proof-
let ?order = order
let ?divides = "op divides"
let ?poly = poly
-from pq0
+from pq0
show ?thesis
apply (cut_tac a = a and p = "pmult p q" and n = "?order a p + ?order a q" in order)
apply (auto simp add: poly_entire simp del: pmult_Cons)
@@ -821,12 +821,12 @@
"list_all (%c. c = 0) p \<longleftrightarrow> pnormalize p = []"
by (induct "p", auto)
-lemma (in idom_char_0) degree_zero:
+lemma (in idom_char_0) degree_zero:
assumes pN: "poly p = poly []" shows"degree p = 0"
proof-
let ?pn = pnormalize
from pN
- show ?thesis
+ show ?thesis
apply (simp add: degree_def)
apply (case_tac "?pn p = []")
apply (auto simp add: poly_zero lemma_degree_zero )
@@ -835,10 +835,10 @@
lemma (in semiring_0) pnormalize_sing: "(pnormalize [x] = [x]) \<longleftrightarrow> x \<noteq> 0" by simp
lemma (in semiring_0) pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])" by simp
-lemma (in semiring_0) pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)"
+lemma (in semiring_0) pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)"
unfolding pnormal_def by simp
lemma (in semiring_0) pnormal_tail: "p\<noteq>[] \<Longrightarrow> pnormal (c#p) \<Longrightarrow> pnormal p"
- unfolding pnormal_def
+ unfolding pnormal_def
apply (cases "pnormalize p = []", auto)
by (cases "c = 0", auto)
@@ -846,7 +846,7 @@
lemma (in semiring_0) pnormal_last_nonzero: "pnormal p ==> last p \<noteq> 0"
proof(induct p)
case Nil thus ?case by (simp add: pnormal_def)
-next
+next
case (Cons a as) thus ?case
apply (simp add: pnormal_def)
apply (cases "pnormalize as = []", simp_all)
@@ -877,12 +877,12 @@
hence "c = d \<and> list_all (\<lambda>x. x=0) ((cs +++ -- ds))"
unfolding poly_zero by (simp add: poly_minus_def algebra_simps)
hence "c = d \<and> (\<forall>x. poly (cs +++ -- ds) x = 0)"
- unfolding poly_zero[symmetric] by simp
+ unfolding poly_zero[symmetric] by simp
thus ?rhs by (simp add: poly_minus poly_add algebra_simps expand_fun_eq)
next
assume ?rhs then show ?lhs by(simp add:expand_fun_eq)
qed
-
+
lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \<Longrightarrow> pnormalize p = pnormalize q"
proof(induct q arbitrary: p)
case Nil thus ?case by (simp only: poly_zero lemma_degree_zero) simp
@@ -892,7 +892,7 @@
proof(induct p)
case Nil
hence "poly [] = poly (c#cs)" by blast
- then have "poly (c#cs) = poly [] " by simp
+ then have "poly (c#cs) = poly [] " by simp
thus ?case by (simp only: poly_zero lemma_degree_zero) simp
next
case (Cons d ds)
@@ -913,7 +913,7 @@
lemma (in semiring_0) pnormalize_length: "length (pnormalize p) \<le> length p" by (induct p, auto)
-lemma (in semiring_0) last_linear_mul_lemma:
+lemma (in semiring_0) last_linear_mul_lemma:
"last ((a %* p) +++ (x#(b %* p))) = (if p=[] then x else b*last p)"
apply (induct p arbitrary: a x b, auto)
@@ -948,14 +948,14 @@
proof-
from p have pnz: "pnormalize p \<noteq> []"
unfolding poly_zero lemma_degree_zero .
-
+
from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz]
have l0: "last ([a, 1] *** pnormalize p) \<noteq> 0" by simp
from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a]
pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz
-
+
- have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1"
+ have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1"
by (auto simp add: poly_length_mult)
have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)"
@@ -980,26 +980,26 @@
by (simp add: mult_ac add_ac right_distrib)
note deq = degree_unique[OF eq]
{assume p: "poly p = poly []"
- with eq have eq': "poly ([a,1] %^(Suc n) *** p) = poly []"
+ with eq have eq': "poly ([a,1] %^(Suc n) *** p) = poly []"
by - (rule ext,simp add: poly_mult poly_cmult poly_add)
from degree_unique[OF eq'] p have ?case by (simp add: degree_def)}
moreover
{assume p: "poly p \<noteq> poly []"
from p have ap: "poly ([a,1] *** p) \<noteq> poly []"
- using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto
+ using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto
have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1]%^n *** ([a,1] *** p))"
by (rule ext, simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps)
from ap have ap': "(poly ([a,1] *** p) = poly []) = False" by blast
have th0: "degree ([a,1]%^n *** ([a,1] *** p)) = degree ([a,1] *** p) + n"
apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap')
by simp
-
+
from degree_unique[OF eq] ap p th0 linear_mul_degree[OF p, of a]
have ?case by (auto simp del: poly.simps)}
ultimately show ?case by blast
qed
-lemma (in recpower_idom_char_0) order_degree:
+lemma (in recpower_idom_char_0) order_degree:
assumes p0: "poly p \<noteq> poly []"
shows "order a p \<le> degree p"
proof-
@@ -1007,7 +1007,7 @@
obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" by blast
{assume "poly q = poly []"
with q p0 have False by (simp add: poly_mult poly_entire)}
- with degree_unique[OF q, unfolded linear_pow_mul_degree]
+ with degree_unique[OF q, unfolded linear_pow_mul_degree]
show ?thesis by auto
qed