--- a/src/HOL/ex/Parallel_Example.thy Mon Jan 23 22:33:25 2023 +0100
+++ b/src/HOL/ex/Parallel_Example.thy Tue Jan 24 10:30:56 2023 +0000
@@ -61,7 +61,7 @@
function factorise_from :: "nat \<Rightarrow> nat \<Rightarrow> nat list" where
"factorise_from k n = (if 1 < k \<and> k \<le> n
then
- let (q, r) = Euclidean_Division.divmod_nat n k
+ let (q, r) = Euclidean_Rings.divmod_nat n k
in if r = 0 then k # factorise_from k q
else factorise_from (Suc k) n
else [])"
@@ -69,7 +69,7 @@
termination factorise_from \<comment> \<open>tuning of this proof is left as an exercise to the reader\<close>
apply (relation "measure (\<lambda>(k, n). 2 * n - k)")
- apply (auto simp add: Euclidean_Division.divmod_nat_def algebra_simps elim!: dvdE)
+ apply (auto simp add: Euclidean_Rings.divmod_nat_def algebra_simps elim!: dvdE)
subgoal for m n
apply (cases "m \<le> n * 2")
apply (auto intro: diff_less_mono)