--- a/src/HOL/Analysis/Set_Integral.thy Wed Oct 09 22:01:33 2024 +0200
+++ b/src/HOL/Analysis/Set_Integral.thy Wed Oct 09 23:38:29 2024 +0200
@@ -577,21 +577,17 @@
syntax
"_complex_lebesgue_integral" :: "pttrn \<Rightarrow> complex \<Rightarrow> 'a measure \<Rightarrow> complex"
- (\<open>\<integral>\<^sup>C _. _ \<partial>_\<close> [0,0] 110)
-
+ (\<open>(\<open>open_block notation=\<open>binder integral\<close>\<close>\<integral>\<^sup>C _. _ \<partial>_)\<close> [0,0] 110)
syntax_consts
"_complex_lebesgue_integral" == complex_lebesgue_integral
-
translations
"\<integral>\<^sup>Cx. f \<partial>M" == "CONST complex_lebesgue_integral M (\<lambda>x. f)"
syntax
"_ascii_complex_lebesgue_integral" :: "pttrn \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"
(\<open>(\<open>indent=3 notation=\<open>binder CLINT\<close>\<close>CLINT _|_. _)\<close> [0,0,10] 10)
-
syntax_consts
"_ascii_complex_lebesgue_integral" == complex_lebesgue_integral
-
translations
"CLINT x|M. f" == "CONST complex_lebesgue_integral M (\<lambda>x. f)"
@@ -646,19 +642,16 @@
abbreviation "set_nn_integral M A f \<equiv> nn_integral M (\<lambda>x. f x * indicator A x)"
syntax
-"_set_nn_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal"
-(\<open>(\<open>notation=\<open>binder integral\<close>\<close>\<integral>\<^sup>+((_)\<in>(_)./ _)/\<partial>_)\<close> [0,0,0,110] 10)
-
-"_set_lebesgue_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal"
-(\<open>(\<open>notation=\<open>binder integral\<close>\<close>\<integral>((_)\<in>(_)./ _)/\<partial>_)\<close> [0,0,0,110] 10)
-
+ "_set_nn_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal"
+ (\<open>(\<open>notation=\<open>binder integral\<close>\<close>\<integral>\<^sup>+((_)\<in>(_)./ _)/\<partial>_)\<close> [0,0,0,110] 10)
+ "_set_lebesgue_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal"
+ (\<open>(\<open>notation=\<open>binder integral\<close>\<close>\<integral>((_)\<in>(_)./ _)/\<partial>_)\<close> [0,0,0,110] 10)
syntax_consts
-"_set_nn_integral" == set_nn_integral and
-"_set_lebesgue_integral" == set_lebesgue_integral
-
+ "_set_nn_integral" == set_nn_integral and
+ "_set_lebesgue_integral" == set_lebesgue_integral
translations
-"\<integral>\<^sup>+x \<in> A. f \<partial>M" == "CONST set_nn_integral M A (\<lambda>x. f)"
-"\<integral>x \<in> A. f \<partial>M" == "CONST set_lebesgue_integral M A (\<lambda>x. f)"
+ "\<integral>\<^sup>+x \<in> A. f \<partial>M" == "CONST set_nn_integral M A (\<lambda>x. f)"
+ "\<integral>x \<in> A. f \<partial>M" == "CONST set_lebesgue_integral M A (\<lambda>x. f)"
lemma set_nn_integral_cong:
assumes "M = M'" "A = B" "\<And>x. x \<in> space M \<inter> A \<Longrightarrow> f x = g x"