TFL/tfl.ML
changeset 10769 70b9b0cfe05f
child 11455 e07927b980ec
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/TFL/tfl.ML	Wed Jan 03 21:20:40 2001 +0100
@@ -0,0 +1,1001 @@
+(*  Title:      TFL/tfl.ML
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+
+First part of main module.
+*)
+
+signature PRIM =
+sig
+  val trace: bool ref
+  type pattern
+  val mk_functional: theory -> term list -> {functional: term, pats: pattern list}
+  val wfrec_definition0: theory -> string -> term -> term -> theory * thm
+  val post_definition: thm list -> theory * (thm * pattern list) ->
+   {theory: theory,
+    rules: thm,
+    rows: int list,
+    TCs: term list list,
+    full_pats_TCs: (term * term list) list}
+  val wfrec_eqns: theory -> xstring -> thm list -> term list ->
+   {WFR: term,
+    SV: term list,
+    proto_def: term,
+    extracta: (thm * term list) list,
+    pats: pattern list}
+  val lazyR_def: theory -> xstring -> thm list -> term list ->
+   {theory: theory,
+    rules: thm,
+    R: term,
+    SV: term list,
+    full_pats_TCs: (term * term list) list,
+    patterns : pattern list}
+  val mk_induction: theory ->
+    {fconst: term, R: term, SV: term list, pat_TCs_list: (term * term list) list} -> thm
+  val postprocess: {wf_tac: tactic, terminator: tactic, simplifier: cterm -> thm} -> theory ->
+    {rules: thm, induction: thm, TCs: term list list} ->
+    {rules: thm, induction: thm, nested_tcs: thm list}
+end;
+
+structure Prim: PRIM =
+struct
+
+val trace = ref false;
+
+open BasisLibrary;
+
+structure R = Rules;
+structure S = USyntax;
+structure U = Utils;
+
+
+fun TFL_ERR func mesg = U.ERR {module = "Tfl", func = func, mesg = mesg};
+
+val concl = #2 o R.dest_thm;
+val hyp = #1 o R.dest_thm;
+
+val list_mk_type = U.end_itlist (curry (op -->));
+
+fun enumerate xs = ListPair.zip(xs, 0 upto (length xs - 1));
+
+fun front_last [] = raise TFL_ERR "front_last" "empty list"
+  | front_last [x] = ([],x)
+  | front_last (h::t) =
+     let val (pref,x) = front_last t
+     in
+        (h::pref,x)
+     end;
+
+
+(*---------------------------------------------------------------------------
+ * The next function is common to pattern-match translation and
+ * proof of completeness of cases for the induction theorem.
+ *
+ * The curried function "gvvariant" returns a function to generate distinct
+ * variables that are guaranteed not to be in names.  The names of
+ * the variables go u, v, ..., z, aa, ..., az, ...  The returned
+ * function contains embedded refs!
+ *---------------------------------------------------------------------------*)
+fun gvvariant names =
+  let val slist = ref names
+      val vname = ref "u"
+      fun new() =
+         if !vname mem_string (!slist)
+         then (vname := bump_string (!vname);  new())
+         else (slist := !vname :: !slist;  !vname)
+  in
+  fn ty => Free(new(), ty)
+  end;
+
+
+(*---------------------------------------------------------------------------
+ * Used in induction theorem production. This is the simple case of
+ * partitioning up pattern rows by the leading constructor.
+ *---------------------------------------------------------------------------*)
+fun ipartition gv (constructors,rows) =
+  let fun pfail s = raise TFL_ERR "partition.part" s
+      fun part {constrs = [],   rows = [],   A} = rev A
+        | part {constrs = [],   rows = _::_, A} = pfail"extra cases in defn"
+        | part {constrs = _::_, rows = [],   A} = pfail"cases missing in defn"
+        | part {constrs = c::crst, rows,     A} =
+          let val (Name,Ty) = dest_Const c
+              val L = binder_types Ty
+              val (in_group, not_in_group) =
+               U.itlist (fn (row as (p::rst, rhs)) =>
+                         fn (in_group,not_in_group) =>
+                  let val (pc,args) = S.strip_comb p
+                  in if (#1(dest_Const pc) = Name)
+                     then ((args@rst, rhs)::in_group, not_in_group)
+                     else (in_group, row::not_in_group)
+                  end)      rows ([],[])
+              val col_types = U.take type_of (length L, #1(hd in_group))
+          in
+          part{constrs = crst, rows = not_in_group,
+               A = {constructor = c,
+                    new_formals = map gv col_types,
+                    group = in_group}::A}
+          end
+  in part{constrs = constructors, rows = rows, A = []}
+  end;
+
+
+
+(*---------------------------------------------------------------------------
+ * Each pattern carries with it a tag (i,b) where
+ * i is the clause it came from and
+ * b=true indicates that clause was given by the user
+ * (or is an instantiation of a user supplied pattern)
+ * b=false --> i = ~1
+ *---------------------------------------------------------------------------*)
+
+type pattern = term * (int * bool)
+
+fun pattern_map f (tm,x) = (f tm, x);
+
+fun pattern_subst theta = pattern_map (subst_free theta);
+
+val pat_of = fst;
+fun row_of_pat x = fst (snd x);
+fun given x = snd (snd x);
+
+(*---------------------------------------------------------------------------
+ * Produce an instance of a constructor, plus genvars for its arguments.
+ *---------------------------------------------------------------------------*)
+fun fresh_constr ty_match colty gv c =
+  let val (_,Ty) = dest_Const c
+      val L = binder_types Ty
+      and ty = body_type Ty
+      val ty_theta = ty_match ty colty
+      val c' = S.inst ty_theta c
+      val gvars = map (S.inst ty_theta o gv) L
+  in (c', gvars)
+  end;
+
+
+(*---------------------------------------------------------------------------
+ * Goes through a list of rows and picks out the ones beginning with a
+ * pattern with constructor = Name.
+ *---------------------------------------------------------------------------*)
+fun mk_group Name rows =
+  U.itlist (fn (row as ((prfx, p::rst), rhs)) =>
+            fn (in_group,not_in_group) =>
+               let val (pc,args) = S.strip_comb p
+               in if ((#1 (Term.dest_Const pc) = Name) handle TERM _ => false)
+                  then (((prfx,args@rst), rhs)::in_group, not_in_group)
+                  else (in_group, row::not_in_group) end)
+      rows ([],[]);
+
+(*---------------------------------------------------------------------------
+ * Partition the rows. Not efficient: we should use hashing.
+ *---------------------------------------------------------------------------*)
+fun partition _ _ (_,_,_,[]) = raise TFL_ERR "partition" "no rows"
+  | partition gv ty_match
+              (constructors, colty, res_ty, rows as (((prfx,_),_)::_)) =
+let val fresh = fresh_constr ty_match colty gv
+     fun part {constrs = [],      rows, A} = rev A
+       | part {constrs = c::crst, rows, A} =
+         let val (c',gvars) = fresh c
+             val (Name,Ty) = dest_Const c'
+             val (in_group, not_in_group) = mk_group Name rows
+             val in_group' =
+                 if (null in_group)  (* Constructor not given *)
+                 then [((prfx, #2(fresh c)), (S.ARB res_ty, (~1,false)))]
+                 else in_group
+         in
+         part{constrs = crst,
+              rows = not_in_group,
+              A = {constructor = c',
+                   new_formals = gvars,
+                   group = in_group'}::A}
+         end
+in part{constrs=constructors, rows=rows, A=[]}
+end;
+
+(*---------------------------------------------------------------------------
+ * Misc. routines used in mk_case
+ *---------------------------------------------------------------------------*)
+
+fun mk_pat (c,l) =
+  let val L = length (binder_types (type_of c))
+      fun build (prfx,tag,plist) =
+          let val args   = take (L,plist)
+              and plist' = drop(L,plist)
+          in (prfx,tag,list_comb(c,args)::plist') end
+  in map build l end;
+
+fun v_to_prfx (prfx, v::pats) = (v::prfx,pats)
+  | v_to_prfx _ = raise TFL_ERR "mk_case" "v_to_prfx";
+
+fun v_to_pats (v::prfx,tag, pats) = (prfx, tag, v::pats)
+  | v_to_pats _ = raise TFL_ERR "mk_case" "v_to_pats";
+
+
+(*----------------------------------------------------------------------------
+ * Translation of pattern terms into nested case expressions.
+ *
+ * This performs the translation and also builds the full set of patterns.
+ * Thus it supports the construction of induction theorems even when an
+ * incomplete set of patterns is given.
+ *---------------------------------------------------------------------------*)
+
+fun mk_case ty_info ty_match usednames range_ty =
+ let
+ fun mk_case_fail s = raise TFL_ERR "mk_case" s
+ val fresh_var = gvvariant usednames
+ val divide = partition fresh_var ty_match
+ fun expand constructors ty ((_,[]), _) = mk_case_fail"expand_var_row"
+   | expand constructors ty (row as ((prfx, p::rst), rhs)) =
+       if (is_Free p)
+       then let val fresh = fresh_constr ty_match ty fresh_var
+                fun expnd (c,gvs) =
+                  let val capp = list_comb(c,gvs)
+                  in ((prfx, capp::rst), pattern_subst[(p,capp)] rhs)
+                  end
+            in map expnd (map fresh constructors)  end
+       else [row]
+ fun mk{rows=[],...} = mk_case_fail"no rows"
+   | mk{path=[], rows = ((prfx, []), (tm,tag))::_} =  (* Done *)
+        ([(prfx,tag,[])], tm)
+   | mk{path=[], rows = _::_} = mk_case_fail"blunder"
+   | mk{path as u::rstp, rows as ((prfx, []), rhs)::rst} =
+        mk{path = path,
+           rows = ((prfx, [fresh_var(type_of u)]), rhs)::rst}
+   | mk{path = u::rstp, rows as ((_, p::_), _)::_} =
+     let val (pat_rectangle,rights) = ListPair.unzip rows
+         val col0 = map(hd o #2) pat_rectangle
+     in
+     if (forall is_Free col0)
+     then let val rights' = map (fn(v,e) => pattern_subst[(v,u)] e)
+                                (ListPair.zip (col0, rights))
+              val pat_rectangle' = map v_to_prfx pat_rectangle
+              val (pref_patl,tm) = mk{path = rstp,
+                                      rows = ListPair.zip (pat_rectangle',
+                                                           rights')}
+          in (map v_to_pats pref_patl, tm)
+          end
+     else
+     let val pty as Type (ty_name,_) = type_of p
+     in
+     case (ty_info ty_name)
+     of None => mk_case_fail("Not a known datatype: "^ty_name)
+      | Some{case_const,constructors} =>
+        let
+            val case_const_name = #1(dest_Const case_const)
+            val nrows = List.concat (map (expand constructors pty) rows)
+            val subproblems = divide(constructors, pty, range_ty, nrows)
+            val groups      = map #group subproblems
+            and new_formals = map #new_formals subproblems
+            and constructors' = map #constructor subproblems
+            val news = map (fn (nf,rows) => {path = nf@rstp, rows=rows})
+                           (ListPair.zip (new_formals, groups))
+            val rec_calls = map mk news
+            val (pat_rect,dtrees) = ListPair.unzip rec_calls
+            val case_functions = map S.list_mk_abs
+                                  (ListPair.zip (new_formals, dtrees))
+            val types = map type_of (case_functions@[u]) @ [range_ty]
+            val case_const' = Const(case_const_name, list_mk_type types)
+            val tree = list_comb(case_const', case_functions@[u])
+            val pat_rect1 = List.concat
+                              (ListPair.map mk_pat (constructors', pat_rect))
+        in (pat_rect1,tree)
+        end
+     end end
+ in mk
+ end;
+
+
+(* Repeated variable occurrences in a pattern are not allowed. *)
+fun FV_multiset tm =
+   case (S.dest_term tm)
+     of S.VAR{Name,Ty} => [Free(Name,Ty)]
+      | S.CONST _ => []
+      | S.COMB{Rator, Rand} => FV_multiset Rator @ FV_multiset Rand
+      | S.LAMB _ => raise TFL_ERR "FV_multiset" "lambda";
+
+fun no_repeat_vars thy pat =
+ let fun check [] = true
+       | check (v::rst) =
+         if mem_term (v,rst) then
+            raise TFL_ERR "no_repeat_vars"
+                          (quote (#1 (dest_Free v)) ^
+                          " occurs repeatedly in the pattern " ^
+                          quote (string_of_cterm (Thry.typecheck thy pat)))
+         else check rst
+ in check (FV_multiset pat)
+ end;
+
+fun dest_atom (Free p) = p
+  | dest_atom (Const p) = p
+  | dest_atom  _ = raise TFL_ERR "dest_atom" "function name not an identifier";
+
+fun same_name (p,q) = #1(dest_atom p) = #1(dest_atom q);
+
+local fun mk_functional_err s = raise TFL_ERR "mk_functional" s
+      fun single [_$_] =
+              mk_functional_err "recdef does not allow currying"
+        | single [f] = f
+        | single fs  =
+              (*multiple function names?*)
+              if length (gen_distinct same_name fs) < length fs
+              then mk_functional_err
+                   "The function being declared appears with multiple types"
+              else mk_functional_err
+                   (Int.toString (length fs) ^
+                    " distinct function names being declared")
+in
+fun mk_functional thy clauses =
+ let val (L,R) = ListPair.unzip (map HOLogic.dest_eq clauses
+                   handle TERM _ => raise TFL_ERR "mk_functional"
+                        "recursion equations must use the = relation")
+     val (funcs,pats) = ListPair.unzip (map (fn (t$u) =>(t,u)) L)
+     val atom = single (gen_distinct (op aconv) funcs)
+     val (fname,ftype) = dest_atom atom
+     val dummy = map (no_repeat_vars thy) pats
+     val rows = ListPair.zip (map (fn x => ([]:term list,[x])) pats,
+                              map (fn (t,i) => (t,(i,true))) (enumerate R))
+     val names = foldr add_term_names (R,[])
+     val atype = type_of(hd pats)
+     and aname = variant names "a"
+     val a = Free(aname,atype)
+     val ty_info = Thry.match_info thy
+     val ty_match = Thry.match_type thy
+     val range_ty = type_of (hd R)
+     val (patts, case_tm) = mk_case ty_info ty_match (aname::names) range_ty
+                                    {path=[a], rows=rows}
+     val patts1 = map (fn (_,tag,[pat]) => (pat,tag)) patts
+          handle Match => mk_functional_err "error in pattern-match translation"
+     val patts2 = Library.sort (Library.int_ord o Library.pairself row_of_pat) patts1
+     val finals = map row_of_pat patts2
+     val originals = map (row_of_pat o #2) rows
+     val dummy = case (originals\\finals)
+             of [] => ()
+          | L => mk_functional_err
+ ("The following clauses are redundant (covered by preceding clauses): " ^
+                   commas (map (fn i => Int.toString (i + 1)) L))
+ in {functional = Abs(Sign.base_name fname, ftype,
+                      abstract_over (atom,
+                                     absfree(aname,atype, case_tm))),
+     pats = patts2}
+end end;
+
+
+(*----------------------------------------------------------------------------
+ *
+ *                    PRINCIPLES OF DEFINITION
+ *
+ *---------------------------------------------------------------------------*)
+
+
+(*For Isabelle, the lhs of a definition must be a constant.*)
+fun mk_const_def sign (Name, Ty, rhs) =
+    Sign.infer_types sign (K None) (K None) [] false
+               ([Const("==",dummyT) $ Const(Name,Ty) $ rhs], propT)
+    |> #1;
+
+(*Make all TVars available for instantiation by adding a ? to the front*)
+fun poly_tvars (Type(a,Ts)) = Type(a, map (poly_tvars) Ts)
+  | poly_tvars (TFree (a,sort)) = TVar (("?" ^ a, 0), sort)
+  | poly_tvars (TVar ((a,i),sort)) = TVar (("?" ^ a, i+1), sort);
+
+local val f_eq_wfrec_R_M =
+           #ant(S.dest_imp(#2(S.strip_forall (concl Thms.WFREC_COROLLARY))))
+      val {lhs=f, rhs} = S.dest_eq f_eq_wfrec_R_M
+      val (fname,_) = dest_Free f
+      val (wfrec,_) = S.strip_comb rhs
+in
+fun wfrec_definition0 thy fid R (functional as Abs(Name, Ty, _)) =
+ let val def_name = if Name<>fid then
+                        raise TFL_ERR "wfrec_definition0"
+                                      ("Expected a definition of " ^
+                                             quote fid ^ " but found one of " ^
+                                      quote Name)
+                    else Name ^ "_def"
+     val wfrec_R_M =  map_term_types poly_tvars
+                          (wfrec $ map_term_types poly_tvars R)
+                      $ functional
+     val def_term = mk_const_def (Theory.sign_of thy) (Name, Ty, wfrec_R_M)
+     val (thy', [def]) = PureThy.add_defs_i false [Thm.no_attributes (def_name, def_term)] thy
+ in (thy', def) end;
+end;
+
+
+
+(*---------------------------------------------------------------------------
+ * This structure keeps track of congruence rules that aren't derived
+ * from a datatype definition.
+ *---------------------------------------------------------------------------*)
+fun extraction_thms thy =
+ let val {case_rewrites,case_congs} = Thry.extract_info thy
+ in (case_rewrites, case_congs)
+ end;
+
+
+(*---------------------------------------------------------------------------
+ * Pair patterns with termination conditions. The full list of patterns for
+ * a definition is merged with the TCs arising from the user-given clauses.
+ * There can be fewer clauses than the full list, if the user omitted some
+ * cases. This routine is used to prepare input for mk_induction.
+ *---------------------------------------------------------------------------*)
+fun merge full_pats TCs =
+let fun insert (p,TCs) =
+      let fun insrt ((x as (h,[]))::rst) =
+                 if (p aconv h) then (p,TCs)::rst else x::insrt rst
+            | insrt (x::rst) = x::insrt rst
+            | insrt[] = raise TFL_ERR "merge.insert" "pattern not found"
+      in insrt end
+    fun pass ([],ptcl_final) = ptcl_final
+      | pass (ptcs::tcl, ptcl) = pass(tcl, insert ptcs ptcl)
+in
+  pass (TCs, map (fn p => (p,[])) full_pats)
+end;
+
+
+fun givens pats = map pat_of (filter given pats);
+
+fun post_definition meta_tflCongs (theory, (def, pats)) =
+ let val tych = Thry.typecheck theory
+     val f = #lhs(S.dest_eq(concl def))
+     val corollary = R.MATCH_MP Thms.WFREC_COROLLARY def
+     val pats' = filter given pats
+     val given_pats = map pat_of pats'
+     val rows = map row_of_pat pats'
+     val WFR = #ant(S.dest_imp(concl corollary))
+     val R = #Rand(S.dest_comb WFR)
+     val corollary' = R.UNDISCH corollary  (* put WF R on assums *)
+     val corollaries = map (fn pat => R.SPEC (tych pat) corollary')
+                           given_pats
+     val (case_rewrites,context_congs) = extraction_thms theory
+     val corollaries' = map(rewrite_rule case_rewrites) corollaries
+     val extract = R.CONTEXT_REWRITE_RULE
+                     (f, [R], cut_apply, meta_tflCongs@context_congs)
+     val (rules, TCs) = ListPair.unzip (map extract corollaries')
+     val rules0 = map (rewrite_rule [Thms.CUT_DEF]) rules
+     val mk_cond_rule = R.FILTER_DISCH_ALL(not o curry (op aconv) WFR)
+     val rules1 = R.LIST_CONJ(map mk_cond_rule rules0)
+ in
+ {theory = theory,
+  rules = rules1,
+  rows = rows,
+  full_pats_TCs = merge (map pat_of pats) (ListPair.zip (given_pats, TCs)),
+  TCs = TCs}
+ end;
+
+
+(*---------------------------------------------------------------------------
+ * Perform the extraction without making the definition. Definition and
+ * extraction commute for the non-nested case.  (Deferred recdefs)
+ *
+ * The purpose of wfrec_eqns is merely to instantiate the recursion theorem
+ * and extract termination conditions: no definition is made.
+ *---------------------------------------------------------------------------*)
+
+fun wfrec_eqns thy fid tflCongs eqns =
+ let val {lhs,rhs} = S.dest_eq (hd eqns)
+     val (f,args) = S.strip_comb lhs
+     val (fname,fty) = dest_atom f
+     val (SV,a) = front_last args    (* SV = schematic variables *)
+     val g = list_comb(f,SV)
+     val h = Free(fname,type_of g)
+     val eqns1 = map (subst_free[(g,h)]) eqns
+     val {functional as Abs(Name, Ty, _),  pats} = mk_functional thy eqns1
+     val given_pats = givens pats
+     (* val f = Free(Name,Ty) *)
+     val Type("fun", [f_dty, f_rty]) = Ty
+     val dummy = if Name<>fid then
+                        raise TFL_ERR "wfrec_eqns"
+                                      ("Expected a definition of " ^
+                                      quote fid ^ " but found one of " ^
+                                      quote Name)
+                 else ()
+     val (case_rewrites,context_congs) = extraction_thms thy
+     val tych = Thry.typecheck thy
+     val WFREC_THM0 = R.ISPEC (tych functional) Thms.WFREC_COROLLARY
+     val Const("All",_) $ Abs(Rname,Rtype,_) = concl WFREC_THM0
+     val R = Free (variant (foldr add_term_names (eqns,[])) Rname,
+                   Rtype)
+     val WFREC_THM = R.ISPECL [tych R, tych g] WFREC_THM0
+     val ([proto_def, WFR],_) = S.strip_imp(concl WFREC_THM)
+     val dummy =
+           if !trace then
+               writeln ("ORIGINAL PROTO_DEF: " ^
+                          Sign.string_of_term (Theory.sign_of thy) proto_def)
+           else ()
+     val R1 = S.rand WFR
+     val corollary' = R.UNDISCH(R.UNDISCH WFREC_THM)
+     val corollaries = map (fn pat => R.SPEC (tych pat) corollary') given_pats
+     val corollaries' = map (rewrite_rule case_rewrites) corollaries
+     fun extract X = R.CONTEXT_REWRITE_RULE
+                       (f, R1::SV, cut_apply, tflCongs@context_congs) X
+ in {proto_def = proto_def,
+     SV=SV,
+     WFR=WFR,
+     pats=pats,
+     extracta = map extract corollaries'}
+ end;
+
+
+(*---------------------------------------------------------------------------
+ * Define the constant after extracting the termination conditions. The
+ * wellfounded relation used in the definition is computed by using the
+ * choice operator on the extracted conditions (plus the condition that
+ * such a relation must be wellfounded).
+ *---------------------------------------------------------------------------*)
+
+fun lazyR_def thy fid tflCongs eqns =
+ let val {proto_def,WFR,pats,extracta,SV} =
+           wfrec_eqns thy fid tflCongs eqns
+     val R1 = S.rand WFR
+     val f = #lhs(S.dest_eq proto_def)
+     val (extractants,TCl) = ListPair.unzip extracta
+     val dummy = if !trace
+                 then (writeln "Extractants = ";
+                       prths extractants;
+                       ())
+                 else ()
+     val TCs = foldr (gen_union (op aconv)) (TCl, [])
+     val full_rqt = WFR::TCs
+     val R' = S.mk_select{Bvar=R1, Body=S.list_mk_conj full_rqt}
+     val R'abs = S.rand R'
+     val proto_def' = subst_free[(R1,R')] proto_def
+     val dummy = if !trace then writeln ("proto_def' = " ^
+                                         Sign.string_of_term
+                                         (Theory.sign_of thy) proto_def')
+                           else ()
+     val {lhs,rhs} = S.dest_eq proto_def'
+     val (c,args) = S.strip_comb lhs
+     val (Name,Ty) = dest_atom c
+     val defn = mk_const_def (Theory.sign_of thy)
+                 (Name, Ty, S.list_mk_abs (args,rhs))
+     val (theory, [def0]) =
+       thy
+       |> PureThy.add_defs_i false
+            [Thm.no_attributes (fid ^ "_def", defn)]
+     val def = freezeT def0;
+     val dummy = if !trace then writeln ("DEF = " ^ string_of_thm def)
+                           else ()
+     (* val fconst = #lhs(S.dest_eq(concl def))  *)
+     val tych = Thry.typecheck theory
+     val full_rqt_prop = map (Dcterm.mk_prop o tych) full_rqt
+         (*lcp: a lot of object-logic inference to remove*)
+     val baz = R.DISCH_ALL
+                 (U.itlist R.DISCH full_rqt_prop
+                  (R.LIST_CONJ extractants))
+     val dum = if !trace then writeln ("baz = " ^ string_of_thm baz)
+                           else ()
+     val f_free = Free (fid, fastype_of f)  (*'cos f is a Const*)
+     val SV' = map tych SV;
+     val SVrefls = map reflexive SV'
+     val def0 = (U.rev_itlist (fn x => fn th => R.rbeta(combination th x))
+                   SVrefls def)
+                RS meta_eq_to_obj_eq
+     val def' = R.MP (R.SPEC (tych R') (R.GEN (tych R1) baz)) def0
+     val body_th = R.LIST_CONJ (map R.ASSUME full_rqt_prop)
+     val bar = R.MP (R.ISPECL[tych R'abs, tych R1] Thms.SELECT_AX)
+                    body_th
+ in {theory = theory, R=R1, SV=SV,
+     rules = U.rev_itlist (U.C R.MP) (R.CONJUNCTS bar) def',
+     full_pats_TCs = merge (map pat_of pats) (ListPair.zip (givens pats, TCl)),
+     patterns = pats}
+ end;
+
+
+
+(*----------------------------------------------------------------------------
+ *
+ *                           INDUCTION THEOREM
+ *
+ *---------------------------------------------------------------------------*)
+
+
+(*------------------------  Miscellaneous function  --------------------------
+ *
+ *           [x_1,...,x_n]     ?v_1...v_n. M[v_1,...,v_n]
+ *     -----------------------------------------------------------
+ *     ( M[x_1,...,x_n], [(x_i,?v_1...v_n. M[v_1,...,v_n]),
+ *                        ...
+ *                        (x_j,?v_n. M[x_1,...,x_(n-1),v_n])] )
+ *
+ * This function is totally ad hoc. Used in the production of the induction
+ * theorem. The nchotomy theorem can have clauses that look like
+ *
+ *     ?v1..vn. z = C vn..v1
+ *
+ * in which the order of quantification is not the order of occurrence of the
+ * quantified variables as arguments to C. Since we have no control over this
+ * aspect of the nchotomy theorem, we make the correspondence explicit by
+ * pairing the incoming new variable with the term it gets beta-reduced into.
+ *---------------------------------------------------------------------------*)
+
+fun alpha_ex_unroll (xlist, tm) =
+  let val (qvars,body) = S.strip_exists tm
+      val vlist = #2(S.strip_comb (S.rhs body))
+      val plist = ListPair.zip (vlist, xlist)
+      val args = map (fn qv => the (gen_assoc (op aconv) (plist, qv))) qvars
+                   handle Library.OPTION => sys_error
+                       "TFL fault [alpha_ex_unroll]: no correspondence"
+      fun build ex      []   = []
+        | build (_$rex) (v::rst) =
+           let val ex1 = betapply(rex, v)
+           in  ex1 :: build ex1 rst
+           end
+     val (nex::exl) = rev (tm::build tm args)
+  in
+  (nex, ListPair.zip (args, rev exl))
+  end;
+
+
+
+(*----------------------------------------------------------------------------
+ *
+ *             PROVING COMPLETENESS OF PATTERNS
+ *
+ *---------------------------------------------------------------------------*)
+
+fun mk_case ty_info usednames thy =
+ let
+ val divide = ipartition (gvvariant usednames)
+ val tych = Thry.typecheck thy
+ fun tych_binding(x,y) = (tych x, tych y)
+ fun fail s = raise TFL_ERR "mk_case" s
+ fun mk{rows=[],...} = fail"no rows"
+   | mk{path=[], rows = [([], (thm, bindings))]} =
+                         R.IT_EXISTS (map tych_binding bindings) thm
+   | mk{path = u::rstp, rows as (p::_, _)::_} =
+     let val (pat_rectangle,rights) = ListPair.unzip rows
+         val col0 = map hd pat_rectangle
+         val pat_rectangle' = map tl pat_rectangle
+     in
+     if (forall is_Free col0) (* column 0 is all variables *)
+     then let val rights' = map (fn ((thm,theta),v) => (thm,theta@[(u,v)]))
+                                (ListPair.zip (rights, col0))
+          in mk{path = rstp, rows = ListPair.zip (pat_rectangle', rights')}
+          end
+     else                     (* column 0 is all constructors *)
+     let val Type (ty_name,_) = type_of p
+     in
+     case (ty_info ty_name)
+     of None => fail("Not a known datatype: "^ty_name)
+      | Some{constructors,nchotomy} =>
+        let val thm' = R.ISPEC (tych u) nchotomy
+            val disjuncts = S.strip_disj (concl thm')
+            val subproblems = divide(constructors, rows)
+            val groups      = map #group subproblems
+            and new_formals = map #new_formals subproblems
+            val existentials = ListPair.map alpha_ex_unroll
+                                   (new_formals, disjuncts)
+            val constraints = map #1 existentials
+            val vexl = map #2 existentials
+            fun expnd tm (pats,(th,b)) = (pats,(R.SUBS[R.ASSUME(tych tm)]th,b))
+            val news = map (fn (nf,rows,c) => {path = nf@rstp,
+                                               rows = map (expnd c) rows})
+                           (U.zip3 new_formals groups constraints)
+            val recursive_thms = map mk news
+            val build_exists = foldr
+                                (fn((x,t), th) =>
+                                 R.CHOOSE (tych x, R.ASSUME (tych t)) th)
+            val thms' = ListPair.map build_exists (vexl, recursive_thms)
+            val same_concls = R.EVEN_ORS thms'
+        in R.DISJ_CASESL thm' same_concls
+        end
+     end end
+ in mk
+ end;
+
+
+fun complete_cases thy =
+ let val tych = Thry.typecheck thy
+     val ty_info = Thry.induct_info thy
+ in fn pats =>
+ let val names = foldr add_term_names (pats,[])
+     val T = type_of (hd pats)
+     val aname = Term.variant names "a"
+     val vname = Term.variant (aname::names) "v"
+     val a = Free (aname, T)
+     val v = Free (vname, T)
+     val a_eq_v = HOLogic.mk_eq(a,v)
+     val ex_th0 = R.EXISTS (tych (S.mk_exists{Bvar=v,Body=a_eq_v}), tych a)
+                           (R.REFL (tych a))
+     val th0 = R.ASSUME (tych a_eq_v)
+     val rows = map (fn x => ([x], (th0,[]))) pats
+ in
+ R.GEN (tych a)
+       (R.RIGHT_ASSOC
+          (R.CHOOSE(tych v, ex_th0)
+                (mk_case ty_info (vname::aname::names)
+                 thy {path=[v], rows=rows})))
+ end end;
+
+
+(*---------------------------------------------------------------------------
+ * Constructing induction hypotheses: one for each recursive call.
+ *
+ * Note. R will never occur as a variable in the ind_clause, because
+ * to do so, it would have to be from a nested definition, and we don't
+ * allow nested defns to have R variable.
+ *
+ * Note. When the context is empty, there can be no local variables.
+ *---------------------------------------------------------------------------*)
+(*
+local infix 5 ==>
+      fun (tm1 ==> tm2) = S.mk_imp{ant = tm1, conseq = tm2}
+in
+fun build_ih f P (pat,TCs) =
+ let val globals = S.free_vars_lr pat
+     fun nested tm = is_some (S.find_term (curry (op aconv) f) tm)
+     fun dest_TC tm =
+         let val (cntxt,R_y_pat) = S.strip_imp(#2(S.strip_forall tm))
+             val (R,y,_) = S.dest_relation R_y_pat
+             val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
+         in case cntxt
+              of [] => (P_y, (tm,[]))
+               | _  => let
+                    val imp = S.list_mk_conj cntxt ==> P_y
+                    val lvs = gen_rems (op aconv) (S.free_vars_lr imp, globals)
+                    val locals = #2(U.pluck (curry (op aconv) P) lvs) handle U.ERR _ => lvs
+                    in (S.list_mk_forall(locals,imp), (tm,locals)) end
+         end
+ in case TCs
+    of [] => (S.list_mk_forall(globals, P$pat), [])
+     |  _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
+                 val ind_clause = S.list_mk_conj ihs ==> P$pat
+             in (S.list_mk_forall(globals,ind_clause), TCs_locals)
+             end
+ end
+end;
+*)
+
+local infix 5 ==>
+      fun (tm1 ==> tm2) = S.mk_imp{ant = tm1, conseq = tm2}
+in
+fun build_ih f (P,SV) (pat,TCs) =
+ let val pat_vars = S.free_vars_lr pat
+     val globals = pat_vars@SV
+     fun nested tm = is_some (S.find_term (curry (op aconv) f) tm)
+     fun dest_TC tm =
+         let val (cntxt,R_y_pat) = S.strip_imp(#2(S.strip_forall tm))
+             val (R,y,_) = S.dest_relation R_y_pat
+             val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
+         in case cntxt
+              of [] => (P_y, (tm,[]))
+               | _  => let
+                    val imp = S.list_mk_conj cntxt ==> P_y
+                    val lvs = gen_rems (op aconv) (S.free_vars_lr imp, globals)
+                    val locals = #2(U.pluck (curry (op aconv) P) lvs) handle U.ERR _ => lvs
+                    in (S.list_mk_forall(locals,imp), (tm,locals)) end
+         end
+ in case TCs
+    of [] => (S.list_mk_forall(pat_vars, P$pat), [])
+     |  _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
+                 val ind_clause = S.list_mk_conj ihs ==> P$pat
+             in (S.list_mk_forall(pat_vars,ind_clause), TCs_locals)
+             end
+ end
+end;
+
+(*---------------------------------------------------------------------------
+ * This function makes good on the promise made in "build_ih".
+ *
+ * Input  is tm = "(!y. R y pat ==> P y) ==> P pat",
+ *           TCs = TC_1[pat] ... TC_n[pat]
+ *           thm = ih1 /\ ... /\ ih_n |- ih[pat]
+ *---------------------------------------------------------------------------*)
+fun prove_case f thy (tm,TCs_locals,thm) =
+ let val tych = Thry.typecheck thy
+     val antc = tych(#ant(S.dest_imp tm))
+     val thm' = R.SPEC_ALL thm
+     fun nested tm = is_some (S.find_term (curry (op aconv) f) tm)
+     fun get_cntxt TC = tych(#ant(S.dest_imp(#2(S.strip_forall(concl TC)))))
+     fun mk_ih ((TC,locals),th2,nested) =
+         R.GENL (map tych locals)
+            (if nested then R.DISCH (get_cntxt TC) th2 handle U.ERR _ => th2
+             else if S.is_imp (concl TC) then R.IMP_TRANS TC th2
+             else R.MP th2 TC)
+ in
+ R.DISCH antc
+ (if S.is_imp(concl thm') (* recursive calls in this clause *)
+  then let val th1 = R.ASSUME antc
+           val TCs = map #1 TCs_locals
+           val ylist = map (#2 o S.dest_relation o #2 o S.strip_imp o
+                            #2 o S.strip_forall) TCs
+           val TClist = map (fn(TC,lvs) => (R.SPEC_ALL(R.ASSUME(tych TC)),lvs))
+                            TCs_locals
+           val th2list = map (U.C R.SPEC th1 o tych) ylist
+           val nlist = map nested TCs
+           val triples = U.zip3 TClist th2list nlist
+           val Pylist = map mk_ih triples
+       in R.MP thm' (R.LIST_CONJ Pylist) end
+  else thm')
+ end;
+
+
+(*---------------------------------------------------------------------------
+ *
+ *         x = (v1,...,vn)  |- M[x]
+ *    ---------------------------------------------
+ *      ?v1 ... vn. x = (v1,...,vn) |- M[x]
+ *
+ *---------------------------------------------------------------------------*)
+fun LEFT_ABS_VSTRUCT tych thm =
+  let fun CHOOSER v (tm,thm) =
+        let val ex_tm = S.mk_exists{Bvar=v,Body=tm}
+        in (ex_tm, R.CHOOSE(tych v, R.ASSUME (tych ex_tm)) thm)
+        end
+      val [veq] = filter (can S.dest_eq) (#1 (R.dest_thm thm))
+      val {lhs,rhs} = S.dest_eq veq
+      val L = S.free_vars_lr rhs
+  in  #2 (U.itlist CHOOSER L (veq,thm))  end;
+
+
+(*----------------------------------------------------------------------------
+ * Input : f, R,  and  [(pat1,TCs1),..., (patn,TCsn)]
+ *
+ * Instantiates WF_INDUCTION_THM, getting Sinduct and then tries to prove
+ * recursion induction (Rinduct) by proving the antecedent of Sinduct from
+ * the antecedent of Rinduct.
+ *---------------------------------------------------------------------------*)
+fun mk_induction thy {fconst, R, SV, pat_TCs_list} =
+let val tych = Thry.typecheck thy
+    val Sinduction = R.UNDISCH (R.ISPEC (tych R) Thms.WF_INDUCTION_THM)
+    val (pats,TCsl) = ListPair.unzip pat_TCs_list
+    val case_thm = complete_cases thy pats
+    val domain = (type_of o hd) pats
+    val Pname = Term.variant (foldr (foldr add_term_names)
+                              (pats::TCsl, [])) "P"
+    val P = Free(Pname, domain --> HOLogic.boolT)
+    val Sinduct = R.SPEC (tych P) Sinduction
+    val Sinduct_assumf = S.rand ((#ant o S.dest_imp o concl) Sinduct)
+    val Rassums_TCl' = map (build_ih fconst (P,SV)) pat_TCs_list
+    val (Rassums,TCl') = ListPair.unzip Rassums_TCl'
+    val Rinduct_assum = R.ASSUME (tych (S.list_mk_conj Rassums))
+    val cases = map (fn pat => betapply (Sinduct_assumf, pat)) pats
+    val tasks = U.zip3 cases TCl' (R.CONJUNCTS Rinduct_assum)
+    val proved_cases = map (prove_case fconst thy) tasks
+    val v = Free (variant (foldr add_term_names (map concl proved_cases, []))
+                    "v",
+                  domain)
+    val vtyped = tych v
+    val substs = map (R.SYM o R.ASSUME o tych o (curry HOLogic.mk_eq v)) pats
+    val proved_cases1 = ListPair.map (fn (th,th') => R.SUBS[th]th')
+                          (substs, proved_cases)
+    val abs_cases = map (LEFT_ABS_VSTRUCT tych) proved_cases1
+    val dant = R.GEN vtyped (R.DISJ_CASESL (R.ISPEC vtyped case_thm) abs_cases)
+    val dc = R.MP Sinduct dant
+    val Parg_ty = type_of(#Bvar(S.dest_forall(concl dc)))
+    val vars = map (gvvariant[Pname]) (S.strip_prod_type Parg_ty)
+    val dc' = U.itlist (R.GEN o tych) vars
+                       (R.SPEC (tych(S.mk_vstruct Parg_ty vars)) dc)
+in
+   R.GEN (tych P) (R.DISCH (tych(concl Rinduct_assum)) dc')
+end
+handle U.ERR _ => raise TFL_ERR "mk_induction" "failed derivation";
+
+
+
+
+(*---------------------------------------------------------------------------
+ *
+ *                        POST PROCESSING
+ *
+ *---------------------------------------------------------------------------*)
+
+
+fun simplify_induction thy hth ind =
+  let val tych = Thry.typecheck thy
+      val (asl,_) = R.dest_thm ind
+      val (_,tc_eq_tc') = R.dest_thm hth
+      val tc = S.lhs tc_eq_tc'
+      fun loop [] = ind
+        | loop (asm::rst) =
+          if (can (Thry.match_term thy asm) tc)
+          then R.UNDISCH
+                 (R.MATCH_MP
+                     (R.MATCH_MP Thms.simp_thm (R.DISCH (tych asm) ind))
+                     hth)
+         else loop rst
+  in loop asl
+end;
+
+
+(*---------------------------------------------------------------------------
+ * The termination condition is an antecedent to the rule, and an
+ * assumption to the theorem.
+ *---------------------------------------------------------------------------*)
+fun elim_tc tcthm (rule,induction) =
+   (R.MP rule tcthm, R.PROVE_HYP tcthm induction)
+
+
+fun postprocess{wf_tac, terminator, simplifier} theory {rules,induction,TCs} =
+let val tych = Thry.typecheck theory
+
+   (*---------------------------------------------------------------------
+    * Attempt to eliminate WF condition. It's the only assumption of rules
+    *---------------------------------------------------------------------*)
+   val (rules1,induction1)  =
+       let val thm = R.prove(tych(HOLogic.mk_Trueprop
+                                  (hd(#1(R.dest_thm rules)))),
+                             wf_tac)
+       in (R.PROVE_HYP thm rules,  R.PROVE_HYP thm induction)
+       end handle U.ERR _ => (rules,induction);
+
+   (*----------------------------------------------------------------------
+    * The termination condition (tc) is simplified to |- tc = tc' (there
+    * might not be a change!) and then 3 attempts are made:
+    *
+    *   1. if |- tc = T, then eliminate it with eqT; otherwise,
+    *   2. apply the terminator to tc'. If |- tc' = T then eliminate; else
+    *   3. replace tc by tc' in both the rules and the induction theorem.
+    *---------------------------------------------------------------------*)
+
+   fun print_thms s L =
+     if !trace then writeln (cat_lines (s :: map string_of_thm L))
+     else ();
+
+   fun print_cterms s L =
+     if !trace then writeln (cat_lines (s :: map string_of_cterm L))
+     else ();;
+
+   fun simplify_tc tc (r,ind) =
+       let val tc1 = tych tc
+           val _ = print_cterms "TC before simplification: " [tc1]
+           val tc_eq = simplifier tc1
+           val _ = print_thms "result: " [tc_eq]
+       in
+       elim_tc (R.MATCH_MP Thms.eqT tc_eq) (r,ind)
+       handle U.ERR _ =>
+        (elim_tc (R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
+                  (R.prove(tych(HOLogic.mk_Trueprop(S.rhs(concl tc_eq))),
+                           terminator)))
+                 (r,ind)
+         handle U.ERR _ =>
+          (R.UNDISCH(R.MATCH_MP (R.MATCH_MP Thms.simp_thm r) tc_eq),
+           simplify_induction theory tc_eq ind))
+       end
+
+   (*----------------------------------------------------------------------
+    * Nested termination conditions are harder to get at, since they are
+    * left embedded in the body of the function (and in induction
+    * theorem hypotheses). Our "solution" is to simplify them, and try to
+    * prove termination, but leave the application of the resulting theorem
+    * to a higher level. So things go much as in "simplify_tc": the
+    * termination condition (tc) is simplified to |- tc = tc' (there might
+    * not be a change) and then 2 attempts are made:
+    *
+    *   1. if |- tc = T, then return |- tc; otherwise,
+    *   2. apply the terminator to tc'. If |- tc' = T then return |- tc; else
+    *   3. return |- tc = tc'
+    *---------------------------------------------------------------------*)
+   fun simplify_nested_tc tc =
+      let val tc_eq = simplifier (tych (#2 (S.strip_forall tc)))
+      in
+      R.GEN_ALL
+       (R.MATCH_MP Thms.eqT tc_eq
+        handle U.ERR _ =>
+          (R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
+                      (R.prove(tych(HOLogic.mk_Trueprop (S.rhs(concl tc_eq))),
+                               terminator))
+            handle U.ERR _ => tc_eq))
+      end
+
+   (*-------------------------------------------------------------------
+    * Attempt to simplify the termination conditions in each rule and
+    * in the induction theorem.
+    *-------------------------------------------------------------------*)
+   fun strip_imp tm = if S.is_neg tm then ([],tm) else S.strip_imp tm
+   fun loop ([],extras,R,ind) = (rev R, ind, extras)
+     | loop ((r,ftcs)::rst, nthms, R, ind) =
+        let val tcs = #1(strip_imp (concl r))
+            val extra_tcs = gen_rems (op aconv) (ftcs, tcs)
+            val extra_tc_thms = map simplify_nested_tc extra_tcs
+            val (r1,ind1) = U.rev_itlist simplify_tc tcs (r,ind)
+            val r2 = R.FILTER_DISCH_ALL(not o S.is_WFR) r1
+        in loop(rst, nthms@extra_tc_thms, r2::R, ind1)
+        end
+   val rules_tcs = ListPair.zip (R.CONJUNCTS rules1, TCs)
+   val (rules2,ind2,extras) = loop(rules_tcs,[],[],induction1)
+in
+  {induction = ind2, rules = R.LIST_CONJ rules2, nested_tcs = extras}
+end;
+
+
+end;