src/HOL/Word/Examples/WordExamples.thy
changeset 24465 70f0214b3ecc
parent 24441 d2a5295570d0
child 25262 d0928156e326
--- a/src/HOL/Word/Examples/WordExamples.thy	Tue Aug 28 19:45:45 2007 +0200
+++ b/src/HOL/Word/Examples/WordExamples.thy	Tue Aug 28 20:13:47 2007 +0200
@@ -21,12 +21,12 @@
 
 -- "number ring simps"
 lemma 
-  "27 + 11 = (38::'a::finite word)"
+  "27 + 11 = (38::'a::len word)"
   "27 + 11 = (6::5 word)"
-  "7 * 3 = (21::'a::finite word)"
-  "11 - 27 = (-16::'a::finite word)"
-  "- -11 = (11::'a::finite word)"
-  "-40 + 1 = (-39::'a::finite word)"
+  "7 * 3 = (21::'a::len word)"
+  "11 - 27 = (-16::'a::len word)"
+  "- -11 = (11::'a::len word)"
+  "-40 + 1 = (-39::'a::len word)"
   by simp_all
 
 lemma "word_pred 2 = 1" by simp
@@ -56,12 +56,12 @@
 lemma "scast (0b1010 :: 4 word) = (0b111010 :: 6 word)" by simp
 
 -- "reducing goals to nat or int and arith:"
-lemma "i < x ==> i < (i + 1 :: 'a :: finite word)" by unat_arith
-lemma "i < x ==> i < (i + 1 :: 'a :: finite word)" by uint_arith
+lemma "i < x ==> i < (i + 1 :: 'a :: len word)" by unat_arith
+lemma "i < x ==> i < (i + 1 :: 'a :: len word)" by uint_arith
 
 -- "bool lists"
 
-lemma "of_bl [True, False, True, True] = (0b1011::'a::finite word)" by simp
+lemma "of_bl [True, False, True, True] = (0b1011::'a::len word)" by simp
 
 lemma "to_bl (0b110::4 word) = [False, True, True, False]" by simp
 
@@ -92,21 +92,21 @@
 lemma "(0b11000 :: 10 word) !! n = (n = 4 \<or> n = 3)" 
   by (auto simp add: bin_nth_Bit)
 
-lemma "set_bit 55 7 True = (183::'a word)" by simp
-lemma "set_bit 0b0010 7 True = (0b10000010::'a word)" by simp
-lemma "set_bit 0b0010 1 False = (0::'a word)" by simp
+lemma "set_bit 55 7 True = (183::'a::len0 word)" by simp
+lemma "set_bit 0b0010 7 True = (0b10000010::'a::len0 word)" by simp
+lemma "set_bit 0b0010 1 False = (0::'a::len0 word)" by simp
 
-lemma "lsb (0b0101::'a::finite word)" by simp
-lemma "\<not> lsb (0b1000::'a::finite word)" by simp
+lemma "lsb (0b0101::'a::len word)" by simp
+lemma "\<not> lsb (0b1000::'a::len word)" by simp
 
 lemma "\<not> msb (0b0101::4 word)" by simp
 lemma   "msb (0b1000::4 word)" by simp
 
-lemma "word_cat (27::4 word) (27::8 word) = (2843::'a::finite word)" by simp
+lemma "word_cat (27::4 word) (27::8 word) = (2843::'a::len word)" by simp
 lemma "word_cat (0b0011::4 word) (0b1111::6word) = (0b0011001111 :: 10 word)" 
   by simp
 
-lemma "0b1011 << 2 = (0b101100::'a word)" by simp
+lemma "0b1011 << 2 = (0b101100::'a::len0 word)" by simp
 lemma "0b1011 >> 2 = (0b10::8 word)" by simp
 lemma "0b1011 >>> 2 = (0b10::8 word)" by simp