src/HOL/Import/HOL_Light_Maps.thy
changeset 47258 880e587eee9f
child 47364 637074507956
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Import/HOL_Light_Maps.thy	Sun Apr 01 14:50:47 2012 +0200
@@ -0,0 +1,324 @@
+(*  Title:      HOL/Import/HOL_Light_Maps.thy
+    Author:     Cezary Kaliszyk, University of Innsbruck
+    Author:     Alexander Krauss, QAware GmbH
+
+Based on earlier code by Steven Obua and Sebastian Skalberg
+*)
+
+header {* Type and constant mappings of HOL Light importer *}
+
+theory HOL_Light_Maps
+imports Import_Setup
+begin
+
+lemma [import_const T]:
+  "True = ((\<lambda>p :: bool. p) = (\<lambda>p. p))"
+  by simp
+
+lemma [import_const "/\\"]:
+  "(op \<and>) = (\<lambda>p q. (\<lambda>f. f p q \<Colon> bool) = (\<lambda>f. f True True))"
+  by metis
+
+lemma [import_const "==>"]:
+  "(op \<longrightarrow>) = (\<lambda>(p\<Colon>bool) q\<Colon>bool. (p \<and> q) = p)"
+  by auto
+
+lemma [import_const "!"]:
+  "All = (\<lambda>P\<Colon>'A \<Rightarrow> bool. P = (\<lambda>x\<Colon>'A. True))"
+  by auto
+
+lemma [import_const "?"]:
+  "Ex = (\<lambda>P\<Colon>'A \<Rightarrow> bool. All (\<lambda>q\<Colon>bool. (All (\<lambda>x\<Colon>'A\<Colon>type. (P x) \<longrightarrow> q)) \<longrightarrow> q))"
+  by auto
+
+lemma [import_const "\\/"]:
+  "(op \<or>) = (\<lambda>p q. \<forall>r. (p \<longrightarrow> r) \<longrightarrow> (q \<longrightarrow> r) \<longrightarrow> r)"
+  by auto
+
+lemma [import_const F]:
+  "False = (\<forall>p. p)"
+  by auto
+
+lemma [import_const "~"]:
+  "Not = (\<lambda>p. p \<longrightarrow> False)"
+  by simp
+
+lemma [import_const "?!"]:
+  "Ex1 = (\<lambda>P\<Colon>'A \<Rightarrow> bool. Ex P \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> x = y))"
+  by auto
+
+lemma [import_const "_FALSITY_"]: "False = False"
+  by simp
+
+lemma hl_ax1: "\<forall>t\<Colon>'A \<Rightarrow> 'B. (\<lambda>x. t x) = t"
+  by metis
+
+lemma hl_ax2: "\<forall>P x\<Colon>'A. P x \<longrightarrow> P (Eps P)"
+  by (auto intro: someI)
+
+lemma [import_const COND]:
+  "If = (\<lambda>t (t1 :: 'A) t2. SOME x. (t = True \<longrightarrow> x = t1) \<and> (t = False \<longrightarrow> x = t2))"
+  unfolding fun_eq_iff by auto
+
+lemma [import_const o]:
+  "(op \<circ>) = (\<lambda>(f\<Colon>'B \<Rightarrow> 'C) g x\<Colon>'A. f (g x))"
+  unfolding fun_eq_iff by simp
+
+lemma [import_const I]: "id = (\<lambda>x\<Colon>'A. x)"
+  by auto
+
+lemma [import_type 1 one_ABS one_REP]:
+  "type_definition Rep_unit Abs_unit (Collect (\<lambda>b. b))"
+  by (metis (full_types) Collect_cong singleton_conv2 type_definition_unit)
+
+lemma [import_const one]: "() = (SOME x\<Colon>unit. True)"
+  by auto
+
+lemma [import_const mk_pair]:
+  "Pair_Rep = (\<lambda>(x\<Colon>'A) (y\<Colon>'B) (a\<Colon>'A) b\<Colon>'B. a = x \<and> b = y)"
+  by (simp add: Pair_Rep_def fun_eq_iff)
+
+lemma [import_type prod ABS_prod REP_prod]:
+  "type_definition Rep_prod Abs_prod (Collect (\<lambda>x\<Colon>'A \<Rightarrow> 'B \<Rightarrow> bool. \<exists>a b. x = Pair_Rep a b))"
+  using type_definition_prod[unfolded Product_Type.prod_def] by simp
+
+lemma [import_const ","]: "Pair = (\<lambda>(x\<Colon>'A) y\<Colon>'B. Abs_prod (Pair_Rep x y))"
+  by (metis Pair_def)
+
+lemma [import_const FST]:
+  "fst = (\<lambda>p\<Colon>'A \<times> 'B. SOME x\<Colon>'A. \<exists>y\<Colon>'B. p = (x, y))"
+  by auto
+
+lemma [import_const SND]:
+  "snd = (\<lambda>p\<Colon>'A \<times> 'B. SOME y\<Colon>'B. \<exists>x\<Colon>'A. p = (x, y))"
+  by auto
+
+(*lemma [import_const CURRY]:
+  "curry = (\<lambda>(f\<Colon>'A \<times> 'B \<Rightarrow> 'C) x y. f (x, y))"
+  using curry_def .*)
+
+lemma [import_const ONE_ONE : Fun.inj]:
+  "inj = (\<lambda>(f\<Colon>'A \<Rightarrow> 'B). \<forall>x1 x2. f x1 = f x2 \<longrightarrow> x1 = x2)"
+  by (auto simp add: fun_eq_iff inj_on_def)
+
+lemma [import_const ONTO : Fun.surj]:
+  "surj = (\<lambda>(f\<Colon>'A \<Rightarrow> 'B). \<forall>y. \<exists>x. y = f x)"
+  by (auto simp add: fun_eq_iff)
+
+lemma hl_ax3: "\<exists>f\<Colon>ind \<Rightarrow> ind. inj f \<and> \<not> surj f"
+  by (rule_tac x="Suc_Rep" in exI)
+     (metis Suc_Rep_inject' injI Suc_Rep_not_Zero_Rep surjD)
+
+import_type_map num : Nat.nat
+import_const_map "_0" : Groups.zero_class.zero
+import_const_map SUC : Nat.Suc
+
+lemma NOT_SUC: "\<forall>n. Suc n \<noteq> 0"
+  by simp
+
+lemma SUC_INJ: "\<forall>m n. (Suc m = Suc n) = (m = n)"
+  by simp
+
+lemma num_INDUCTION:
+  "\<forall>P. P 0 \<and> (\<forall>n. P n \<longrightarrow> P (Suc n)) \<longrightarrow> (\<forall>n. P n)"
+  by (auto intro: nat.induct)
+
+lemma [import_const NUMERAL]: "id = (\<lambda>x :: nat. x)"
+  by auto
+
+definition [simp]: "bit0 n = 2 * n"
+
+lemma [import_const BIT0]:
+  "bit0 = (SOME fn. fn (id 0) = id 0 \<and> (\<forall>n. fn (Suc n) = Suc (Suc (fn n))))"
+  apply (auto intro!: some_equality[symmetric])
+  apply (auto simp add: fun_eq_iff)
+  apply (induct_tac x)
+  apply auto
+  done
+
+definition [import_const BIT1, simp]:
+  "bit1 = (\<lambda>x. Suc (bit0 x))"
+
+definition [simp]: "pred n = n - 1"
+
+lemma PRE[import_const PRE : HOL_Light_Maps.pred]:
+  "pred (id (0\<Colon>nat)) = id (0\<Colon>nat) \<and> (\<forall>n\<Colon>nat. pred (Suc n) = n)"
+  by simp
+
+lemma ADD[import_const "+" : Groups.plus_class.plus]:
+  "(\<forall>n :: nat. (id 0) + n = n) \<and> (\<forall>m n. (Suc m) + n = Suc (m + n))"
+  by simp
+
+lemma MULT[import_const "*" : Groups.times_class.times]:
+  "(\<forall>n :: nat. (id 0) * n = id 0) \<and> (\<forall>m n. (Suc m) * n = (m * n) + n)"
+  by simp
+
+lemma EXP[import_const EXP : Power.power_class.power]:
+  "(\<forall>m. m ^ (id 0) = id (bit1 0)) \<and> (\<forall>(m :: nat) n. m ^ (Suc n) = m * (m ^ n))"
+  by simp
+
+lemma LE[import_const "<=" : Orderings.ord_class.less_eq]:
+  "(\<forall>m :: nat. m \<le> (id 0) = (m = id 0)) \<and> (\<forall>m n. m \<le> (Suc n) = (m = Suc n \<or> m \<le> n))"
+  by auto
+
+lemma LT[import_const "<" : Orderings.ord_class.less]:
+  "(\<forall>m :: nat. m < (id 0) = False) \<and> (\<forall>m n. m < (Suc n) = (m = n \<or> m < n))"
+  by auto
+
+lemma DEF_GE[import_const ">=" : "Orderings.ord_class.greater_eq"]:
+  "(op \<ge>) = (\<lambda>x y :: nat. y \<le> x)"
+  by simp
+
+lemma DEF_GT[import_const ">" : "Orderings.ord_class.greater"]:
+  "(op >) = (\<lambda>x y :: nat. y < x)"
+  by simp
+
+lemma DEF_MAX[import_const "MAX"]:
+  "max = (\<lambda>x y :: nat. if x \<le> y then y else x)"
+  by (auto simp add: min_max.le_iff_sup fun_eq_iff)
+
+lemma DEF_MIN[import_const "MIN"]:
+  "min = (\<lambda>x y :: nat. if x \<le> y then x else y)"
+  by (auto simp add: min_max.le_iff_inf fun_eq_iff)
+
+lemma EVEN[import_const "EVEN" : "Parity.even_odd_class.even"]:
+  "even (id 0\<Colon>nat) = True \<and> (\<forall>n. even (Suc n) = (\<not> even n))"
+  by simp
+
+lemma SUB[import_const "-" : "Groups.minus_class.minus"]:
+  "(\<forall>m\<Colon>nat. m - (id 0) = m) \<and> (\<forall>m n. m - (Suc n) = pred (m - n))"
+  by simp
+
+lemma FACT[import_const "FACT" : "Fact.fact_class.fact"]:
+  "fact (id 0) = id (bit1 0) \<and> (\<forall>n. fact (Suc n) = Suc n * fact n)"
+  by simp
+
+import_const_map MOD : Divides.div_class.mod
+import_const_map DIV : Divides.div_class.div
+
+lemma DIVISION_0:
+  "\<forall>m n\<Colon>nat. if n = id 0 then m div n = id 0 \<and> m mod n = m else m = m div n * n + m mod n \<and> m mod n < n"
+  by simp
+
+lemmas [import_type sum "_dest_sum" "_mk_sum"] = type_definition_sum
+import_const_map INL : Sum_Type.Inl
+import_const_map INR : Sum_Type.Inr
+
+lemma sum_INDUCT:
+  "\<forall>P. (\<forall>a. P (Inl a)) \<and> (\<forall>a. P (Inr a)) \<longrightarrow> (\<forall>x. P x)"
+  by (auto intro: sum.induct)
+
+lemma sum_RECURSION:
+  "\<forall>Inl' Inr'. \<exists>fn. (\<forall>a. fn (Inl a) = Inl' a) \<and> (\<forall>a. fn (Inr a) = Inr' a)"
+  by (intro allI, rule_tac x="sum_case Inl' Inr'" in exI) auto
+
+lemma OUTL[import_const "OUTL" : "Sum_Type.Projl"]:
+  "Sum_Type.Projl (Inl x) = x"
+  by simp
+
+lemma OUTR[import_const "OUTR" : "Sum_Type.Projr"]:
+  "Sum_Type.Projr (Inr y) = y"
+  by simp
+
+import_type_map list : List.list
+import_const_map NIL : List.list.Nil
+import_const_map CONS : List.list.Cons
+
+lemma list_INDUCT:
+  "\<forall>P\<Colon>'A list \<Rightarrow> bool. P [] \<and> (\<forall>a0 a1. P a1 \<longrightarrow> P (a0 # a1)) \<longrightarrow> (\<forall>x. P x)"
+  using list.induct by auto
+
+lemma list_RECURSION:
+ "\<forall>nil' cons'. \<exists>fn\<Colon>'A list \<Rightarrow> 'Z. fn [] = nil' \<and> (\<forall>(a0\<Colon>'A) a1\<Colon>'A list. fn (a0 # a1) = cons' a0 a1 (fn a1))"
+  by (intro allI, rule_tac x="list_rec nil' cons'" in exI) auto
+
+lemma HD[import_const HD : List.hd]:
+  "hd ((h\<Colon>'A) # t) = h"
+  by simp
+
+lemma TL[import_const TL : List.tl]:
+  "tl ((h\<Colon>'A) # t) = t"
+  by simp
+
+lemma APPEND[import_const APPEND : List.append]:
+  "(\<forall>l\<Colon>'A list. [] @ l = l) \<and> (\<forall>(h\<Colon>'A) t l. (h # t) @ l = h # t @ l)"
+  by simp
+
+lemma REVERSE[import_const REVERSE : List.rev]:
+  "rev [] = ([] :: 'A list) \<and> rev ((x\<Colon>'A) # l) = rev l @ [x]"
+  by simp
+
+lemma LENGTH[import_const LENGTH : List.length]:
+  "length [] = id 0 \<and> (\<forall>(h\<Colon>'A) t. length (h # t) = Suc (length t))"
+  by simp
+
+lemma MAP[import_const MAP : List.map]:
+  "(\<forall>f\<Colon>'A \<Rightarrow> 'B. map f [] = []) \<and>
+       (\<forall>(f\<Colon>'A \<Rightarrow> 'B) h t. map f (h # t) = f h # map f t)"
+  by simp
+
+lemma LAST[import_const LAST : List.last]:
+  "last ((h\<Colon>'A) # t) = (if t = [] then h else last t)"
+  by simp
+
+lemma BUTLAST[import_const BUTLAST : List.butlast]:
+    "butlast [] = ([] :: 't18337 list) \<and>
+     butlast ((h :: 't18337) # t) = (if t = [] then [] else h # butlast t)"
+  by simp
+
+lemma REPLICATE[import_const REPLICATE : List.replicate]:
+  "replicate (id (0\<Colon>nat)) (x\<Colon>'t18358) = [] \<and>
+   replicate (Suc n) x = x # replicate n x"
+  by simp
+
+lemma NULL[import_const NULL : List.null]:
+  "List.null ([]\<Colon>'t18373 list) = True \<and> List.null ((h\<Colon>'t18373) # t) = False"
+  unfolding null_def by simp
+
+lemma ALL[import_const ALL : List.list_all]:
+  "list_all (P\<Colon>'t18393 \<Rightarrow> bool) [] = True \<and>
+  list_all P (h # t) = (P h \<and> list_all P t)"
+  by simp
+
+lemma EX[import_const EX : List.list_ex]:
+  "list_ex (P\<Colon>'t18414 \<Rightarrow> bool) [] = False \<and>
+  list_ex P (h # t) = (P h \<or> list_ex P t)"
+  by simp
+
+lemma ITLIST[import_const ITLIST : List.foldr]:
+  "foldr (f\<Colon>'t18437 \<Rightarrow> 't18436 \<Rightarrow> 't18436) [] b = b \<and>
+  foldr f (h # t) b = f h (foldr f t b)"
+  by simp
+
+lemma ALL2_DEF[import_const ALL2 : List.list_all2]:
+  "list_all2 (P\<Colon>'t18495 \<Rightarrow> 't18502 \<Rightarrow> bool) [] (l2\<Colon>'t18502 list) = (l2 = []) \<and>
+  list_all2 P ((h1\<Colon>'t18495) # (t1\<Colon>'t18495 list)) l2 =
+  (if l2 = [] then False else P h1 (hd l2) \<and> list_all2 P t1 (tl l2))"
+  by simp (induct_tac l2, simp_all)
+
+lemma FILTER[import_const FILTER : List.filter]:
+  "filter (P\<Colon>'t18680 \<Rightarrow> bool) [] = [] \<and>
+  filter P ((h\<Colon>'t18680) # t) = (if P h then h # filter P t else filter P t)"
+  by simp
+
+lemma ZIP[import_const ZIP : List.zip]:
+ "zip [] [] = ([] :: ('t18824 \<times> 't18825) list) \<and>
+  zip ((h1\<Colon>'t18849) # t1) ((h2\<Colon>'t18850) # t2) = (h1, h2) # zip t1 t2"
+  by simp
+
+lemma WF[import_const WF : Wellfounded.wfP]:
+  "wfP u \<longleftrightarrow> (\<forall>P. (\<exists>x :: 'A. P x) \<longrightarrow> (\<exists>x. P x \<and> (\<forall>y. u y x \<longrightarrow> \<not> P y)))"
+proof (intro allI iffI impI wfI_min[to_pred], elim exE wfE_min[to_pred])
+  fix x :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and xa :: "'a" and Q
+  assume a: "xa \<in> Q"
+  assume "\<forall>P. Ex P \<longrightarrow> (\<exists>xa. P xa \<and> (\<forall>y. x y xa \<longrightarrow> \<not> P y))"
+  then have "Ex (\<lambda>x. x \<in> Q) \<longrightarrow> (\<exists>xa. (\<lambda>x. x \<in> Q) xa \<and> (\<forall>y. x y xa \<longrightarrow> \<not> (\<lambda>x. x \<in> Q) y))" by auto
+  then show "\<exists>z\<in>Q. \<forall>y. x y z \<longrightarrow> y \<notin> Q" using a by auto
+next
+  fix x P and xa :: 'A and z
+  assume "P xa" "z \<in> {a. P a}" "\<And>y. x y z \<Longrightarrow> y \<notin> {a. P a}"
+  then show "\<exists>xa. P xa \<and> (\<forall>y. x y xa \<longrightarrow> \<not> P y)" by auto
+qed auto
+
+end
+