src/HOL/Import/Importer.thy
changeset 47258 880e587eee9f
parent 47244 a7f85074c169
child 47259 2d4ea84278da
--- a/src/HOL/Import/Importer.thy	Sun Apr 01 09:12:03 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,236 +0,0 @@
-(*  Title:      HOL/Import/Importer.thy
-    Author:     Sebastian Skalberg, TU Muenchen
-*)
-
-theory Importer
-imports Main
-keywords
-  "import_segment" "import_theory" "end_import" "setup_theory" "end_setup"
-  "setup_dump" "append_dump" "flush_dump" "ignore_thms" "type_maps"
-  "def_maps" "thm_maps" "const_renames" "const_moves" "const_maps" :: thy_decl and ">"
-uses "shuffler.ML" "import_rews.ML" ("proof_kernel.ML") ("replay.ML") ("import.ML")
-begin
-
-setup {* Shuffler.setup #> importer_setup *}
-
-parse_ast_translation smarter_trueprop_parsing
-
-lemma conj_norm [shuffle_rule]: "(A & B ==> PROP C) == ([| A ; B |] ==> PROP C)"
-proof
-  assume "A & B ==> PROP C" A B
-  thus "PROP C"
-    by auto
-next
-  assume "[| A; B |] ==> PROP C" "A & B"
-  thus "PROP C"
-    by auto
-qed
-
-lemma imp_norm [shuffle_rule]: "(Trueprop (A --> B)) == (A ==> B)"
-proof
-  assume "A --> B" A
-  thus B ..
-next
-  assume "A ==> B"
-  thus "A --> B"
-    by auto
-qed
-
-lemma all_norm [shuffle_rule]: "(Trueprop (ALL x. P x)) == (!!x. P x)"
-proof
-  fix x
-  assume "ALL x. P x"
-  thus "P x" ..
-next
-  assume "!!x. P x"
-  thus "ALL x. P x"
-    ..
-qed
-
-lemma ex_norm [shuffle_rule]: "(EX x. P x ==> PROP Q) == (!!x. P x ==> PROP Q)"
-proof
-  fix x
-  assume ex: "EX x. P x ==> PROP Q"
-  assume "P x"
-  hence "EX x. P x" ..
-  with ex show "PROP Q" .
-next
-  assume allx: "!!x. P x ==> PROP Q"
-  assume "EX x. P x"
-  hence p: "P (SOME x. P x)"
-    ..
-  from allx
-  have "P (SOME x. P x) ==> PROP Q"
-    .
-  with p
-  show "PROP Q"
-    by auto
-qed
-
-lemma eq_norm [shuffle_rule]: "Trueprop (t = u) == (t == u)"
-proof
-  assume "t = u"
-  thus "t == u" by simp
-next
-  assume "t == u"
-  thus "t = u"
-    by simp
-qed
-
-section {* General Setup *}
-
-lemma eq_imp: "P = Q \<Longrightarrow> P \<longrightarrow> Q"
-  by auto
-
-lemma HOLallI: "(!! bogus. P bogus) \<Longrightarrow> (ALL bogus. P bogus)"
-proof -
-  assume "!! bogus. P bogus"
-  thus "ALL x. P x"
-    ..
-qed
-
-consts
-  ONE_ONE :: "('a => 'b) => bool"
-
-defs
-  ONE_ONE_DEF: "ONE_ONE f == ALL x y. f x = f y --> x = y"
-
-lemma ONE_ONE_rew: "ONE_ONE f = inj_on f UNIV"
-  by (simp add: ONE_ONE_DEF inj_on_def)
-
-lemma INFINITY_AX: "EX (f::ind \<Rightarrow> ind). (inj f & ~(surj f))"
-proof (rule exI,safe)
-  show "inj Suc_Rep"
-    by (rule injI) (rule Suc_Rep_inject)
-next
-  assume "surj Suc_Rep"
-  hence "ALL y. EX x. y = Suc_Rep x"
-    by (simp add: surj_def)
-  hence "EX x. Zero_Rep = Suc_Rep x"
-    by (rule spec)
-  thus False
-  proof (rule exE)
-    fix x
-    assume "Zero_Rep = Suc_Rep x"
-    hence "Suc_Rep x = Zero_Rep"
-      ..
-    with Suc_Rep_not_Zero_Rep
-    show False
-      ..
-  qed
-qed
-
-lemma EXISTS_DEF: "Ex P = P (Eps P)"
-proof (rule iffI)
-  assume "Ex P"
-  thus "P (Eps P)"
-    ..
-next
-  assume "P (Eps P)"
-  thus "Ex P"
-    ..
-qed
-
-consts
-  TYPE_DEFINITION :: "('a => bool) => ('b => 'a) => bool"
-
-defs
-  TYPE_DEFINITION: "TYPE_DEFINITION p rep == ((ALL x y. (rep x = rep y) --> (x = y)) & (ALL x. (p x = (EX y. x = rep y))))"
-
-lemma ex_imp_nonempty: "Ex P ==> EX x. x : (Collect P)"
-  by simp
-
-lemma light_ex_imp_nonempty: "P t ==> EX x. x : (Collect P)"
-proof -
-  assume "P t"
-  hence "EX x. P x"
-    ..
-  thus ?thesis
-    by (rule ex_imp_nonempty)
-qed
-
-lemma light_imp_as: "[| Q --> P; P --> Q |] ==> P = Q"
-  by blast
-
-lemma typedef_hol2hol4:
-  assumes a: "type_definition (Rep::'a=>'b) Abs (Collect P)"
-  shows "EX rep. TYPE_DEFINITION P (rep::'a=>'b)"
-proof -
-  from a
-  have td: "(ALL x. P (Rep x)) & (ALL x. Abs (Rep x) = x) & (ALL y. P y \<longrightarrow> Rep (Abs y) = y)"
-    by (simp add: type_definition_def)
-  have ed: "TYPE_DEFINITION P Rep"
-  proof (auto simp add: TYPE_DEFINITION)
-    fix x y
-    assume b: "Rep x = Rep y"
-    from td have "x = Abs (Rep x)"
-      by auto
-    also have "Abs (Rep x) = Abs (Rep y)"
-      by (simp add: b)
-    also from td have "Abs (Rep y) = y"
-      by auto
-    finally show "x = y" .
-  next
-    fix x
-    assume "P x"
-    with td
-    have "Rep (Abs x) = x"
-      by auto
-    hence "x = Rep (Abs x)"
-      ..
-    thus "EX y. x = Rep y"
-      ..
-  next
-    fix y
-    from td
-    show "P (Rep y)"
-      by auto
-  qed
-  show ?thesis
-    apply (rule exI [of _ Rep])
-    apply (rule ed)
-    .
-qed
-
-lemma typedef_hol2hollight:
-  assumes a: "type_definition (Rep::'a=>'b) Abs (Collect P)"
-  shows "(Abs (Rep a) = a) & (P r = (Rep (Abs r) = r))"
-proof
-  from a
-  show "Abs (Rep a) = a"
-    by (rule type_definition.Rep_inverse)
-next
-  show "P r = (Rep (Abs r) = r)"
-  proof
-    assume "P r"
-    hence "r \<in> (Collect P)"
-      by simp
-    with a
-    show "Rep (Abs r) = r"
-      by (rule type_definition.Abs_inverse)
-  next
-    assume ra: "Rep (Abs r) = r"
-    from a
-    have "Rep (Abs r) \<in> (Collect P)"
-      by (rule type_definition.Rep)
-    thus "P r"
-      by (simp add: ra)
-  qed
-qed
-
-lemma termspec_help: "[| Ex P ; c == Eps P |] ==> P c"
-  apply simp
-  apply (rule someI_ex)
-  .
-
-lemma typedef_helper: "EX x. P x \<Longrightarrow> EX x. x \<in> (Collect P)"
-  by simp
-
-use "proof_kernel.ML"
-use "replay.ML"
-use "import.ML"
-
-setup Import.setup
-
-end
-