| changeset 58437 | 8d124c73c37a |
| parent 58410 | 6d46ad54a2ab |
| child 58656 | 7f14d5d9b933 |
--- a/src/HOL/Power.thy Wed Sep 24 19:10:30 2014 +0200 +++ b/src/HOL/Power.thy Wed Sep 24 19:11:21 2014 +0200 @@ -795,6 +795,10 @@ by simp qed +lemma power_setsum: + "c ^ (\<Sum>a\<in>A. f a) = (\<Prod>a\<in>A. c ^ f a)" + by (induct A rule: infinite_finite_induct) (simp_all add: power_add) + lemma setprod_gen_delta: assumes fS: "finite S" shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::comm_monoid_mult) * c^ (card S - 1) else c^ card S)"