--- a/src/HOL/Library/Code_Target_Nat.thy Sun Oct 16 09:31:04 2016 +0200
+++ b/src/HOL/Library/Code_Target_Nat.thy Sun Oct 16 09:31:05 2016 +0200
@@ -115,7 +115,7 @@
m' = 2 * of_nat m
in if q = 0 then m' else m' + 1)"
proof -
- from mod_div_equality have *: "of_nat n = of_nat (n div 2 * 2 + n mod 2)" by simp
+ from div_mult_mod_eq have *: "of_nat n = of_nat (n div 2 * 2 + n mod 2)" by simp
show ?thesis
by (simp add: Let_def divmod_nat_div_mod of_nat_add [symmetric])
(simp add: * mult.commute of_nat_mult add.commute)