src/HOL/Nominal/Examples/Class2.thy
changeset 36277 9be4ab2acc13
child 41893 dde7df1176b7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nominal/Examples/Class2.thy	Thu Apr 22 22:01:06 2010 +0200
@@ -0,0 +1,6069 @@
+theory Class2
+imports Class1
+begin
+
+text {* Reduction *}
+
+lemma fin_not_Cut:
+  assumes a: "fin M x"
+  shows "\<not>(\<exists>a M' x N'. M = Cut <a>.M' (x).N')"
+using a
+by (induct) (auto)
+
+lemma fresh_not_fin:
+  assumes a: "x\<sharp>M"
+  shows "\<not>fin M x"
+proof -
+  have "fin M x \<Longrightarrow> x\<sharp>M \<Longrightarrow> False" by (induct rule: fin.induct) (auto simp add: abs_fresh fresh_atm)
+  with a show "\<not>fin M x" by blast
+qed
+
+lemma fresh_not_fic:
+  assumes a: "a\<sharp>M"
+  shows "\<not>fic M a"
+proof -
+  have "fic M a \<Longrightarrow> a\<sharp>M \<Longrightarrow> False" by (induct rule: fic.induct) (auto simp add: abs_fresh fresh_atm)
+  with a show "\<not>fic M a" by blast
+qed
+
+lemma c_redu_subst1:
+  assumes a: "M \<longrightarrow>\<^isub>c M'" "c\<sharp>M" "y\<sharp>P"
+  shows "M{y:=<c>.P} \<longrightarrow>\<^isub>c M'{y:=<c>.P}"
+using a
+proof(nominal_induct avoiding: y c P rule: c_redu.strong_induct)
+  case (left M a N x)
+  then show ?case
+    apply -
+    apply(simp)
+    apply(rule conjI)
+    apply(force)
+    apply(auto)
+    apply(subgoal_tac "M{a:=(x).N}{y:=<c>.P} = M{y:=<c>.P}{a:=(x).(N{y:=<c>.P})}")(*A*)
+    apply(simp)
+    apply(rule c_redu.intros)
+    apply(rule not_fic_subst1)
+    apply(simp)
+    apply(simp add: subst_fresh)
+    apply(simp add: subst_fresh)
+    apply(simp add: abs_fresh fresh_atm)
+    apply(rule subst_subst2)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp)
+    done
+next
+  case (right N x a M)
+  then show ?case
+    apply -
+    apply(simp)
+    apply(rule conjI)
+    (* case M = Ax y a *)
+    apply(rule impI)
+    apply(subgoal_tac "N{x:=<a>.Ax y a}{y:=<c>.P} = N{y:=<c>.P}{x:=<c>.P}")
+    apply(simp)
+    apply(rule c_redu.right)
+    apply(rule not_fin_subst2)
+    apply(simp)
+    apply(rule subst_fresh)
+    apply(simp add: abs_fresh)
+    apply(simp add: abs_fresh)
+    apply(rule sym)
+    apply(rule interesting_subst1')
+    apply(simp add: fresh_atm)
+    apply(simp)
+    apply(simp)
+    (* case M \<noteq> Ax y a*)
+    apply(rule impI)
+    apply(subgoal_tac "N{x:=<a>.M}{y:=<c>.P} = N{y:=<c>.P}{x:=<a>.(M{y:=<c>.P})}")
+    apply(simp)
+    apply(rule c_redu.right)
+    apply(rule not_fin_subst2)
+    apply(simp)
+    apply(simp add: subst_fresh)
+    apply(simp add: subst_fresh)
+    apply(simp add: abs_fresh fresh_atm)
+    apply(rule subst_subst3)
+    apply(simp_all add: fresh_atm fresh_prod)
+    done
+qed
+
+lemma c_redu_subst2:
+  assumes a: "M \<longrightarrow>\<^isub>c M'" "c\<sharp>P" "y\<sharp>M"
+  shows "M{c:=(y).P} \<longrightarrow>\<^isub>c M'{c:=(y).P}"
+using a
+proof(nominal_induct avoiding: y c P rule: c_redu.strong_induct)
+  case (right N x a M)
+  then show ?case
+    apply -
+    apply(simp)
+    apply(rule conjI)
+    apply(force)
+    apply(auto)
+    apply(subgoal_tac "N{x:=<a>.M}{c:=(y).P} = N{c:=(y).P}{x:=<a>.(M{c:=(y).P})}")(*A*)
+    apply(simp)
+    apply(rule c_redu.intros)
+    apply(rule not_fin_subst1)
+    apply(simp)
+    apply(simp add: subst_fresh)
+    apply(simp add: subst_fresh)
+    apply(simp add: abs_fresh fresh_atm)
+    apply(rule subst_subst1)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp)
+    done
+next
+  case (left M a N x)
+  then show ?case
+    apply -
+    apply(simp)
+    apply(rule conjI)
+    (* case N = Ax x c *)
+    apply(rule impI)
+    apply(subgoal_tac "M{a:=(x).Ax x c}{c:=(y).P} = M{c:=(y).P}{a:=(y).P}")
+    apply(simp)
+    apply(rule c_redu.left)
+    apply(rule not_fic_subst2)
+    apply(simp)
+    apply(simp)
+    apply(rule subst_fresh)
+    apply(simp add: abs_fresh)
+    apply(rule sym)
+    apply(rule interesting_subst2')
+    apply(simp add: fresh_atm)
+    apply(simp)
+    apply(simp)
+    (* case M \<noteq> Ax y a*)
+    apply(rule impI)
+    apply(subgoal_tac "M{a:=(x).N}{c:=(y).P} = M{c:=(y).P}{a:=(x).(N{c:=(y).P})}")
+    apply(simp)
+    apply(rule c_redu.left)
+    apply(rule not_fic_subst2)
+    apply(simp)
+    apply(simp add: subst_fresh)
+    apply(simp add: subst_fresh)
+    apply(simp add: abs_fresh fresh_atm)
+    apply(rule subst_subst4)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp add: fresh_prod fresh_atm)
+    apply(simp)
+    done
+qed
+
+lemma c_redu_subst1':
+  assumes a: "M \<longrightarrow>\<^isub>c M'" 
+  shows "M{y:=<c>.P} \<longrightarrow>\<^isub>c M'{y:=<c>.P}"
+using a
+proof -
+  obtain y'::"name"   where fs1: "y'\<sharp>(M,M',P,P,y)" by (rule exists_fresh(1), rule fin_supp, blast)
+  obtain c'::"coname" where fs2: "c'\<sharp>(M,M',P,P,c)" by (rule exists_fresh(2), rule fin_supp, blast)
+  have "M{y:=<c>.P} = ([(y',y)]\<bullet>M){y':=<c'>.([(c',c)]\<bullet>P)}" using fs1 fs2
+    apply -
+    apply(rule trans)
+    apply(rule_tac y="y'" in subst_rename(3))
+    apply(simp)
+    apply(rule subst_rename(4))
+    apply(simp)
+    done
+  also have "\<dots> \<longrightarrow>\<^isub>c ([(y',y)]\<bullet>M'){y':=<c'>.([(c',c)]\<bullet>P)}" using fs1 fs2
+    apply -
+    apply(rule c_redu_subst1)
+    apply(simp add: c_redu.eqvt a)
+    apply(simp_all add: fresh_left calc_atm fresh_prod)
+    done
+  also have "\<dots> = M'{y:=<c>.P}" using fs1 fs2
+    apply -
+    apply(rule sym)
+    apply(rule trans)
+    apply(rule_tac y="y'" in subst_rename(3))
+    apply(simp)
+    apply(rule subst_rename(4))
+    apply(simp)
+    done
+  finally show ?thesis by simp
+qed
+
+lemma c_redu_subst2':
+  assumes a: "M \<longrightarrow>\<^isub>c M'" 
+  shows "M{c:=(y).P} \<longrightarrow>\<^isub>c M'{c:=(y).P}"
+using a
+proof -
+  obtain y'::"name"   where fs1: "y'\<sharp>(M,M',P,P,y)" by (rule exists_fresh(1), rule fin_supp, blast)
+  obtain c'::"coname" where fs2: "c'\<sharp>(M,M',P,P,c)" by (rule exists_fresh(2), rule fin_supp, blast)
+  have "M{c:=(y).P} = ([(c',c)]\<bullet>M){c':=(y').([(y',y)]\<bullet>P)}" using fs1 fs2
+    apply -
+    apply(rule trans)
+    apply(rule_tac c="c'" in subst_rename(1))
+    apply(simp)
+    apply(rule subst_rename(2))
+    apply(simp)
+    done
+  also have "\<dots> \<longrightarrow>\<^isub>c ([(c',c)]\<bullet>M'){c':=(y').([(y',y)]\<bullet>P)}" using fs1 fs2
+    apply -
+    apply(rule c_redu_subst2)
+    apply(simp add: c_redu.eqvt a)
+    apply(simp_all add: fresh_left calc_atm fresh_prod)
+    done
+  also have "\<dots> = M'{c:=(y).P}" using fs1 fs2
+    apply -
+    apply(rule sym)
+    apply(rule trans)
+    apply(rule_tac c="c'" in subst_rename(1))
+    apply(simp)
+    apply(rule subst_rename(2))
+    apply(simp)
+    done
+
+  finally show ?thesis by simp
+qed
+
+lemma aux1:
+  assumes a: "M = M'" "M' \<longrightarrow>\<^isub>l M''"
+  shows "M \<longrightarrow>\<^isub>l M''"
+using a by simp
+  
+lemma aux2:
+  assumes a: "M \<longrightarrow>\<^isub>l M'" "M' = M''"
+  shows "M \<longrightarrow>\<^isub>l M''"
+using a by simp
+
+lemma aux3:
+  assumes a: "M = M'" "M' \<longrightarrow>\<^isub>a* M''"
+  shows "M \<longrightarrow>\<^isub>a* M''"
+using a by simp
+
+lemma aux4:
+  assumes a: "M = M'"
+  shows "M \<longrightarrow>\<^isub>a* M'"
+using a by blast
+
+lemma l_redu_subst1:
+  assumes a: "M \<longrightarrow>\<^isub>l M'" 
+  shows "M{y:=<c>.P} \<longrightarrow>\<^isub>a* M'{y:=<c>.P}"
+using a
+proof(nominal_induct M M' avoiding: y c P rule: l_redu.strong_induct)
+  case LAxR
+  then show ?case
+    apply -
+    apply(rule aux3)
+    apply(rule better_Cut_substn)
+    apply(simp add: abs_fresh)
+    apply(simp)
+    apply(simp add: fresh_atm)
+    apply(auto)
+    apply(rule aux4)
+    apply(simp add: trm.inject alpha calc_atm fresh_atm)
+    apply(rule a_star_trans)
+    apply(rule a_starI)
+    apply(rule al_redu)
+    apply(rule l_redu.intros)
+    apply(simp add: subst_fresh)
+    apply(simp add: fresh_atm)
+    apply(rule fic_subst2)
+    apply(simp_all)
+    apply(rule aux4)
+    apply(rule subst_comm')
+    apply(simp_all)
+    done
+next
+  case LAxL
+  then show ?case
+    apply -
+    apply(rule aux3)
+    apply(rule better_Cut_substn)
+    apply(simp add: abs_fresh)
+    apply(simp)
+    apply(simp add: trm.inject fresh_atm)
+    apply(auto)
+    apply(rule aux4)
+    apply(rule sym)
+    apply(rule fin_substn_nrename)
+    apply(simp_all)
+    apply(rule a_starI)
+    apply(rule al_redu)
+    apply(rule aux2)
+    apply(rule l_redu.intros)
+    apply(simp add: subst_fresh)
+    apply(simp add: fresh_atm)
+    apply(rule fin_subst1)
+    apply(simp_all)
+    apply(rule subst_comm')
+    apply(simp_all)
+    done
+next
+  case (LNot v M N u a b)
+  then show ?case
+  proof -
+    { assume asm: "N\<noteq>Ax y b"
+      have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){y:=<c>.P} = 
+        (Cut <a>.NotR (u).(M{y:=<c>.P}) a (v).NotL <b>.(N{y:=<c>.P}) v)" using prems
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>l (Cut <b>.(N{y:=<c>.P}) (u).(M{y:=<c>.P}))" using prems
+        by (auto intro: l_redu.intros simp add: subst_fresh)
+      also have "\<dots> = (Cut <b>.N (u).M){y:=<c>.P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally have ?thesis by auto
+    }
+    moreover
+    { assume asm: "N=Ax y b"
+      have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){y:=<c>.P} = 
+        (Cut <a>.NotR (u).(M{y:=<c>.P}) a (v).NotL <b>.(N{y:=<c>.P}) v)" using prems
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* (Cut <b>.(N{y:=<c>.P}) (u).(M{y:=<c>.P}))" using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <b>.(Cut <c>.P (y).Ax y b) (u).(M{y:=<c>.P}))" using prems
+        by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* (Cut <b>.(P[c\<turnstile>c>b]) (u).(M{y:=<c>.P}))" 
+      proof (cases "fic P c")
+        case True 
+        assume "fic P c"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutL_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxR_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fic P c" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_left)
+          apply(simp)
+          apply(simp add: subst_with_ax2)
+          done
+      qed
+      also have "\<dots> = (Cut <b>.N (u).M){y:=<c>.P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule crename_swap)
+        apply(simp)
+        done
+      finally have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <b>.N (u).M){y:=<c>.P}" 
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LAnd1 b a1 M1 a2 M2 N z u)
+  then show ?case
+  proof -
+    { assume asm: "M1\<noteq>Ax y a1"
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} = 
+        Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL1 (u).(N{y:=<c>.P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{y:=<c>.P}) (u).(N{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a1>.M1 (u).N){y:=<c>.P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a1>.M1 (u).N){y:=<c>.P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "M1=Ax y a1"
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} = 
+        Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL1 (u).(N{y:=<c>.P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{y:=<c>.P}) (u).(N{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a1>.(Cut <c>.P (y). Ax y a1) (u).(N{y:=<c>.P})" 
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.P[c\<turnstile>c>a1] (u).(N{y:=<c>.P})"
+      proof (cases "fic P c")
+        case True 
+        assume "fic P c"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutL_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxR_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fic P c" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_left)
+          apply(simp)
+          apply(simp add: subst_with_ax2)
+          done
+      qed
+      also have "\<dots> = (Cut <a1>.M1 (u).N){y:=<c>.P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule crename_swap)
+        apply(simp)
+        done
+      finally 
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a1>.M1 (u).N){y:=<c>.P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LAnd2 b a1 M1 a2 M2 N z u)
+  then show ?case
+  proof -
+    { assume asm: "M2\<noteq>Ax y a2"
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} = 
+        Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL2 (u).(N{y:=<c>.P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{y:=<c>.P}) (u).(N{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a2>.M2 (u).N){y:=<c>.P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a2>.M2 (u).N){y:=<c>.P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "M2=Ax y a2"
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} = 
+        Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL2 (u).(N{y:=<c>.P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{y:=<c>.P}) (u).(N{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a2>.(Cut <c>.P (y). Ax y a2) (u).(N{y:=<c>.P})" 
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.P[c\<turnstile>c>a2] (u).(N{y:=<c>.P})"
+      proof (cases "fic P c")
+        case True 
+        assume "fic P c"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutL_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxR_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fic P c" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_left)
+          apply(simp)
+          apply(simp add: subst_with_ax2)
+          done
+      qed
+      also have "\<dots> = (Cut <a2>.M2 (u).N){y:=<c>.P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule crename_swap)
+        apply(simp)
+        done
+      finally 
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a2>.M2 (u).N){y:=<c>.P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LOr1 b a M N1 N2 z x1 x2 y c P)
+  then show ?case
+  proof -
+    { assume asm: "M\<noteq>Ax y a"
+      have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} = 
+        Cut <b>.OrR1 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x1).(N1{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a>.M (x1).N1){y:=<c>.P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x1).N1){y:=<c>.P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "M=Ax y a"
+      have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} = 
+        Cut <b>.OrR1 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x1).(N1{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a>.(Cut <c>.P (y). Ax y a) (x1).(N1{y:=<c>.P})" 
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.P[c\<turnstile>c>a] (x1).(N1{y:=<c>.P})"
+      proof (cases "fic P c")
+        case True 
+        assume "fic P c"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutL_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxR_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fic P c" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_left)
+          apply(simp)
+          apply(simp add: subst_with_ax2)
+          done
+      qed
+      also have "\<dots> = (Cut <a>.M (x1).N1){y:=<c>.P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule crename_swap)
+        apply(simp)
+        done
+      finally 
+      have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x1).N1){y:=<c>.P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LOr2 b a M N1 N2 z x1 x2 y c P)
+  then show ?case
+  proof -
+    { assume asm: "M\<noteq>Ax y a"
+      have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} = 
+        Cut <b>.OrR2 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x2).(N2{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a>.M (x2).N2){y:=<c>.P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x2).N2){y:=<c>.P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "M=Ax y a"
+      have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} = 
+        Cut <b>.OrR2 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x2).(N2{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a>.(Cut <c>.P (y). Ax y a) (x2).(N2{y:=<c>.P})" 
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.P[c\<turnstile>c>a] (x2).(N2{y:=<c>.P})"
+      proof (cases "fic P c")
+        case True 
+        assume "fic P c"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutL_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxR_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fic P c" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_left)
+          apply(simp)
+          apply(simp add: subst_with_ax2)
+          done
+      qed
+      also have "\<dots> = (Cut <a>.M (x2).N2){y:=<c>.P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule crename_swap)
+        apply(simp)
+        done
+      finally 
+      have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x2).N2){y:=<c>.P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LImp z N u Q x M b a d y c P)
+  then show ?case
+  proof -
+    { assume asm: "N\<noteq>Ax y d"
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} = 
+        Cut <b>.ImpR (x).<a>.(M{y:=<c>.P}) b (z).ImpL <d>.(N{y:=<c>.P}) (u).(Q{y:=<c>.P}) z" 
+        using prems by (simp add: fresh_prod abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{y:=<c>.P})  (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a>.(Cut <d>.N  (x).M) (u).Q){y:=<c>.P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} \<longrightarrow>\<^isub>a* 
+                     (Cut <a>.(Cut <d>.N  (x).M) (u).Q){y:=<c>.P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "N=Ax y d"
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} = 
+        Cut <b>.ImpR (x).<a>.(M{y:=<c>.P}) b (z).ImpL <d>.(N{y:=<c>.P}) (u).(Q{y:=<c>.P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{y:=<c>.P})  (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a>.(Cut <d>.(Cut <c>.P (y).Ax y d)  (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})"
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(P[c\<turnstile>c>d]) (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})"
+      proof (cases "fic P c")
+        case True 
+        assume "fic P c"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutL_intro)
+          apply(rule a_Cut_l)
+          apply(simp add: subst_fresh abs_fresh)
+          apply(simp add: abs_fresh fresh_atm)
+          apply(rule al_redu)
+          apply(rule better_LAxR_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fic P c" 
+        then show ?thesis using prems
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_CutL)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_left)
+          apply(simp)
+          apply(simp add: subst_with_ax2)
+          done
+      qed
+      also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha)
+        apply(rule sym)
+        apply(rule crename_swap)
+        apply(simp)
+        done
+      finally 
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} \<longrightarrow>\<^isub>a* 
+               (Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+qed
+
+lemma l_redu_subst2:
+  assumes a: "M \<longrightarrow>\<^isub>l M'" 
+  shows "M{c:=(y).P} \<longrightarrow>\<^isub>a* M'{c:=(y).P}"
+using a
+proof(nominal_induct M M' avoiding: y c P rule: l_redu.strong_induct)
+  case LAxR
+  then show ?case
+    apply -
+    apply(rule aux3)
+    apply(rule better_Cut_substc)
+    apply(simp add: abs_fresh)
+    apply(simp add: abs_fresh)
+    apply(simp add: trm.inject fresh_atm)
+    apply(auto)
+    apply(rule aux4)
+    apply(rule sym)
+    apply(rule fic_substc_crename)
+    apply(simp_all)
+    apply(rule a_starI)
+    apply(rule al_redu)
+    apply(rule aux2)
+    apply(rule l_redu.intros)
+    apply(simp add: subst_fresh)
+    apply(simp add: fresh_atm)
+    apply(rule fic_subst1)
+    apply(simp_all)
+    apply(rule subst_comm')
+    apply(simp_all)
+    done
+next
+  case LAxL
+  then show ?case
+    apply -
+    apply(rule aux3)
+    apply(rule better_Cut_substc)
+    apply(simp)
+    apply(simp add: abs_fresh)
+    apply(simp add: fresh_atm)
+    apply(auto)
+    apply(rule aux4)
+    apply(simp add: trm.inject alpha calc_atm fresh_atm)
+    apply(rule a_star_trans)
+    apply(rule a_starI)
+    apply(rule al_redu)
+    apply(rule l_redu.intros)
+    apply(simp add: subst_fresh)
+    apply(simp add: fresh_atm)
+    apply(rule fin_subst2)
+    apply(simp_all)
+    apply(rule aux4)
+    apply(rule subst_comm')
+    apply(simp_all)
+    done
+next
+  case (LNot v M N u a b)
+  then show ?case
+  proof -
+    { assume asm: "M\<noteq>Ax u c"
+      have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){c:=(y).P} = 
+        (Cut <a>.NotR (u).(M{c:=(y).P}) a (v).NotL <b>.(N{c:=(y).P}) v)" using prems
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>l (Cut <b>.(N{c:=(y).P}) (u).(M{c:=(y).P}))" using prems
+        by (auto intro: l_redu.intros simp add: subst_fresh)
+      also have "\<dots> = (Cut <b>.N (u).M){c:=(y).P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally have ?thesis by auto
+    }
+    moreover
+    { assume asm: "M=Ax u c"
+      have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){c:=(y).P} = 
+        (Cut <a>.NotR (u).(M{c:=(y).P}) a (v).NotL <b>.(N{c:=(y).P}) v)" using prems
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* (Cut <b>.(N{c:=(y).P}) (u).(M{c:=(y).P}))" using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <b>.(N{c:=(y).P}) (u).(Cut <c>.(Ax u c) (y).P))" using prems
+        by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* (Cut <b>.(N{c:=(y).P})  (u).(P[y\<turnstile>n>u]))" 
+      proof (cases "fin P y")
+        case True 
+        assume "fin P y"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutR_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fin P y" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_right)
+          apply(simp)
+          apply(simp add: subst_with_ax1)
+          done
+      qed
+      also have "\<dots> = (Cut <b>.N (u).M){c:=(y).P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule nrename_swap)
+        apply(simp)
+        done
+      finally have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <b>.N (u).M){c:=(y).P}" 
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LAnd1 b a1 M1 a2 M2 N z u)
+  then show ?case
+  proof -
+    { assume asm: "N\<noteq>Ax u c"
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} = 
+        Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL1 (u).(N{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{c:=(y).P}) (u).(N{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a1>.M1 (u).N){c:=(y).P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a1>.M1 (u).N){c:=(y).P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "N=Ax u c"
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} = 
+        Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL1 (u).(N{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{c:=(y).P}) (u).(N{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a1>.(M1{c:=(y).P}) (u).(Cut <c>.(Ax u c) (y).P)" 
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a1>.(M1{c:=(y).P}) (u).(P[y\<turnstile>n>u])"
+      proof (cases "fin P y")
+        case True 
+        assume "fin P y"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutR_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fin P y" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_right)
+          apply(simp)
+          apply(simp add: subst_with_ax1)
+          done
+      qed
+      also have "\<dots> = (Cut <a1>.M1 (u).N){c:=(y).P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule nrename_swap)
+        apply(simp)
+        done
+      finally 
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a1>.M1 (u).N){c:=(y).P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LAnd2 b a1 M1 a2 M2 N z u)
+  then show ?case
+  proof -
+    { assume asm: "N\<noteq>Ax u c"
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} = 
+        Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL2 (u).(N{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{c:=(y).P}) (u).(N{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a2>.M2 (u).N){c:=(y).P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a2>.M2 (u).N){c:=(y).P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "N=Ax u c"
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} = 
+        Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL2 (u).(N{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{c:=(y).P}) (u).(N{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a2>.(M2{c:=(y).P}) (u).(Cut <c>.(Ax u c) (y).P)" 
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a2>.(M2{c:=(y).P}) (u).(P[y\<turnstile>n>u])"
+      proof (cases "fin P y")
+        case True 
+        assume "fin P y"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutR_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fin P y" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_right)
+          apply(simp)
+          apply(simp add: subst_with_ax1)
+          done
+      qed
+      also have "\<dots> = (Cut <a2>.M2 (u).N){c:=(y).P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule nrename_swap)
+        apply(simp)
+        done
+      finally 
+      have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a2>.M2 (u).N){c:=(y).P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LOr1 b a M N1 N2 z x1 x2 y c P)
+  then show ?case
+  proof -
+    { assume asm: "N1\<noteq>Ax x1 c"
+      have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} = 
+        Cut <b>.OrR1 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x1).(N1{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a>.M (x1).N1){c:=(y).P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x1).N1){c:=(y).P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "N1=Ax x1 c"
+      have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} = 
+        Cut <b>.OrR1 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x1).(N1{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a>.(M{c:=(y).P}) (x1).(Cut <c>.(Ax x1 c) (y).P)" 
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P})   (x1).(P[y\<turnstile>n>x1])"
+      proof (cases "fin P y")
+        case True 
+        assume "fin P y"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutR_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fin P y" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_right)
+          apply(simp)
+          apply(simp add: subst_with_ax1)
+          done
+      qed
+      also have "\<dots> = (Cut <a>.M (x1).N1){c:=(y).P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule nrename_swap)
+        apply(simp)
+        done
+      finally 
+      have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x1).N1){c:=(y).P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LOr2 b a M N1 N2 z x1 x2 y c P)
+  then show ?case
+  proof -
+    { assume asm: "N2\<noteq>Ax x2 c"
+      have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} = 
+        Cut <b>.OrR2 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x2).(N2{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a>.M (x2).N2){c:=(y).P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x2).N2){c:=(y).P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "N2=Ax x2 c"
+      have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} = 
+        Cut <b>.OrR2 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x2).(N2{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a>.(M{c:=(y).P}) (x2).(Cut <c>.(Ax x2 c) (y).P)" 
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(M{c:=(y).P}) (x2).(P[y\<turnstile>n>x2])"
+      proof (cases "fin P y")
+        case True 
+        assume "fin P y"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_starI)
+          apply(rule better_CutR_intro)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fin P y" 
+        then show ?thesis
+          apply -
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_right)
+          apply(simp)
+          apply(simp add: subst_with_ax1)
+          done
+      qed
+      also have "\<dots> = (Cut <a>.M (x2).N2){c:=(y).P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(rule sym)
+        apply(rule nrename_swap)
+        apply(simp)
+        done
+      finally 
+      have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} \<longrightarrow>\<^isub>a* (Cut <a>.M (x2).N2){c:=(y).P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+next
+  case (LImp z N u Q x M b a d y c P)
+  then show ?case
+  proof -
+    { assume asm: "M\<noteq>Ax x c \<and> Q\<noteq>Ax u c"
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} = 
+        Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z" 
+        using prems by (simp add: fresh_prod abs_fresh fresh_atm)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = (Cut <a>.(Cut <d>.N  (x).M) (u).Q){c:=(y).P}" using prems 
+        by (simp add: subst_fresh abs_fresh fresh_atm)
+      finally 
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} \<longrightarrow>\<^isub>a* 
+                     (Cut <a>.(Cut <d>.N  (x).M) (u).Q){c:=(y).P}"
+        by simp
+    } 
+    moreover
+    { assume asm: "M=Ax x c \<and> Q\<noteq>Ax u c"
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} = 
+        Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(Cut <c>.Ax x c (y).P)) (u).(Q{c:=(y).P})"
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(P[y\<turnstile>n>x])) (u).(Q{c:=(y).P})"
+      proof (cases "fin P y")
+        case True 
+        assume "fin P y"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(simp)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fin P y" 
+        then show ?thesis using prems
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_right)
+          apply(simp)
+          apply(simp add: subst_with_ax1)
+          done
+      qed
+      also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha)
+        apply(simp add: nrename_swap)
+        done
+      finally 
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} \<longrightarrow>\<^isub>a* 
+               (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}"
+        by simp
+    }
+     moreover
+    { assume asm: "M\<noteq>Ax x c \<and> Q=Ax u c"
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} = 
+        Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(M{c:=(y).P})) (u).(Cut <c>.Ax u c (y).P)"
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(M{c:=(y).P})) (u).(P[y\<turnstile>n>u])"
+      proof (cases "fin P y")
+        case True 
+        assume "fin P y"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_star_CutR)
+          apply(rule a_starI)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fin P y" 
+        then show ?thesis using prems
+          apply -
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_right)
+          apply(simp)
+          apply(simp add: subst_with_ax1)
+          done
+      qed
+      also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(simp add: alpha fresh_atm)
+        apply(simp add: nrename_swap)
+        done
+      finally 
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} \<longrightarrow>\<^isub>a* 
+               (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}"
+        by simp
+    }
+     moreover
+    { assume asm: "M=Ax x c \<and> Q=Ax u c"
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} = 
+        Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z" 
+        using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod)
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})"
+        using prems
+        apply -
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
+        done
+      also have "\<dots> = Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(Cut <c>.Ax x c (y).P)) (u).(Cut <c>.Ax u c (y).P)"
+        using prems by simp
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(Cut <c>.Ax x c (y).P)) (u).(P[y\<turnstile>n>u])"
+      proof (cases "fin P y")
+        case True 
+        assume "fin P y"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_star_CutR)
+          apply(rule a_starI)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fin P y" 
+        then show ?thesis using prems
+          apply -
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_right)
+          apply(simp)
+          apply(simp add: subst_with_ax1)
+          done
+      qed
+      also have "\<dots> \<longrightarrow>\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P})  (x).(P[y\<turnstile>n>x])) (u).(P[y\<turnstile>n>u])"
+      proof (cases "fin P y")
+        case True 
+        assume "fin P y"
+        then show ?thesis using prems
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_CutR)
+          apply(rule a_starI)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(simp)
+          done
+      next
+        case False 
+        assume "\<not>fin P y" 
+        then show ?thesis using prems
+          apply -
+          apply(rule a_star_CutL)
+          apply(rule a_star_CutR)
+          apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule ac_redu)
+          apply(rule better_right)
+          apply(simp)
+          apply(simp add: subst_with_ax1)
+          done
+      qed
+      also have "\<dots> = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems
+        apply -
+        apply(auto simp add: subst_fresh abs_fresh)
+        apply(simp add: trm.inject)
+        apply(rule conjI)
+        apply(simp add: alpha fresh_atm trm.inject)
+        apply(simp add: nrename_swap)
+        apply(simp add: alpha fresh_atm trm.inject)
+        apply(simp add: nrename_swap)
+        done
+      finally 
+      have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} \<longrightarrow>\<^isub>a* 
+               (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}"
+        by simp
+    }
+    ultimately show ?thesis by blast
+  qed
+qed
+
+lemma a_redu_subst1:
+  assumes a: "M \<longrightarrow>\<^isub>a M'"
+  shows "M{y:=<c>.P} \<longrightarrow>\<^isub>a* M'{y:=<c>.P}"
+using a
+proof(nominal_induct avoiding: y c P rule: a_redu.strong_induct)
+  case al_redu
+  then show ?case by (simp only: l_redu_subst1)
+next
+  case ac_redu
+  then show ?case
+    apply -
+    apply(rule a_starI)
+    apply(rule a_redu.ac_redu)
+    apply(simp only: c_redu_subst1')
+    done
+next
+  case (a_Cut_l a N x M M' y c P)
+  then show ?case
+    apply(simp add: subst_fresh fresh_a_redu)
+    apply(rule conjI)
+    apply(rule impI)+
+    apply(simp)
+    apply(drule ax_do_not_a_reduce)
+    apply(simp)
+    apply(rule impI)
+    apply(rule conjI)
+    apply(rule impI)
+    apply(simp)
+    apply(drule_tac x="y" in meta_spec)
+    apply(drule_tac x="c" in meta_spec)
+    apply(drule_tac x="P" in meta_spec)
+    apply(simp)
+    apply(rule a_star_trans)
+    apply(rule a_star_CutL)
+    apply(assumption)
+    apply(rule a_star_trans)
+    apply(rule_tac M'="P[c\<turnstile>c>a]" in a_star_CutL)
+    apply(case_tac "fic P c")
+    apply(rule a_starI)
+    apply(rule al_redu)
+    apply(rule better_LAxR_intro)
+    apply(simp)
+    apply(rule a_star_trans)
+    apply(rule a_starI)
+    apply(rule ac_redu)
+    apply(rule better_left)
+    apply(simp)
+    apply(rule subst_with_ax2)
+    apply(rule aux4)
+    apply(simp add: trm.inject)
+    apply(simp add: alpha fresh_atm)
+    apply(simp add: crename_swap)
+    apply(rule impI)
+    apply(rule a_star_CutL)
+    apply(auto)
+    done
+next
+  case (a_Cut_r a N x M M' y c P)
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_CutR)
+    apply(auto)[1]
+    apply(rule a_star_CutR)
+    apply(auto)[1]
+    done
+next
+  case a_NotL
+  then show ?case 
+    apply(auto)
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutR)
+    apply(rule a_star_NotL)
+    apply(auto)[1]
+    apply(rule a_star_NotL)
+    apply(auto)[1]
+    done
+next
+  case a_NotR
+  then show ?case 
+    apply(auto)
+    apply(rule a_star_NotR)
+    apply(auto)[1]
+    done
+next
+  case a_AndR_l
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_AndR)
+    apply(auto)
+    done
+next
+  case a_AndR_r
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_AndR)
+    apply(auto)
+    done
+next
+  case a_AndL1
+  then show ?case 
+    apply(auto)
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutR)
+    apply(rule a_star_AndL1)
+    apply(auto)[1]
+    apply(rule a_star_AndL1)
+    apply(auto)[1]
+    done
+next
+  case a_AndL2
+  then show ?case 
+    apply(auto)
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutR)
+    apply(rule a_star_AndL2)
+    apply(auto)[1]
+    apply(rule a_star_AndL2)
+    apply(auto)[1]
+    done
+next
+  case a_OrR1
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_OrR1)
+    apply(auto)
+    done
+next
+  case a_OrR2
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_OrR2)
+    apply(auto)
+    done
+next
+  case a_OrL_l
+  then show ?case 
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutR)
+    apply(rule a_star_OrL)
+    apply(auto)
+    apply(rule a_star_OrL)
+    apply(auto)
+    done
+next
+  case a_OrL_r
+  then show ?case 
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutR)
+    apply(rule a_star_OrL)
+    apply(auto)
+    apply(rule a_star_OrL)
+    apply(auto)
+    done
+next
+  case a_ImpR
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_ImpR)
+    apply(auto)
+    done
+next
+  case a_ImpL_r
+  then show ?case 
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutR)
+    apply(rule a_star_ImpL)
+    apply(auto)
+    apply(rule a_star_ImpL)
+    apply(auto)
+    done
+next
+  case a_ImpL_l
+  then show ?case 
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutR)
+    apply(rule a_star_ImpL)
+    apply(auto)
+    apply(rule a_star_ImpL)
+    apply(auto)
+    done
+qed
+
+lemma a_redu_subst2:
+  assumes a: "M \<longrightarrow>\<^isub>a M'"
+  shows "M{c:=(y).P} \<longrightarrow>\<^isub>a* M'{c:=(y).P}"
+using a
+proof(nominal_induct avoiding: y c P rule: a_redu.strong_induct)
+  case al_redu
+  then show ?case by (simp only: l_redu_subst2)
+next
+  case ac_redu
+  then show ?case
+    apply -
+    apply(rule a_starI)
+    apply(rule a_redu.ac_redu)
+    apply(simp only: c_redu_subst2')
+    done
+next
+  case (a_Cut_r a N x M M' y c P)
+  then show ?case
+    apply(simp add: subst_fresh fresh_a_redu)
+    apply(rule conjI)
+    apply(rule impI)+
+    apply(simp)
+    apply(drule ax_do_not_a_reduce)
+    apply(simp)
+    apply(rule impI)
+    apply(rule conjI)
+    apply(rule impI)
+    apply(simp)
+    apply(drule_tac x="c" in meta_spec)
+    apply(drule_tac x="y" in meta_spec)
+    apply(drule_tac x="P" in meta_spec)
+    apply(simp)
+    apply(rule a_star_trans)
+    apply(rule a_star_CutR)
+    apply(assumption)
+    apply(rule a_star_trans)
+    apply(rule_tac N'="P[y\<turnstile>n>x]" in a_star_CutR)
+    apply(case_tac "fin P y")
+    apply(rule a_starI)
+    apply(rule al_redu)
+    apply(rule better_LAxL_intro)
+    apply(simp)
+    apply(rule a_star_trans)
+    apply(rule a_starI)
+    apply(rule ac_redu)
+    apply(rule better_right)
+    apply(simp)
+    apply(rule subst_with_ax1)
+    apply(rule aux4)
+    apply(simp add: trm.inject)
+    apply(simp add: alpha fresh_atm)
+    apply(simp add: nrename_swap)
+    apply(rule impI)
+    apply(rule a_star_CutR)
+    apply(auto)
+    done
+next
+  case (a_Cut_l a N x M M' y c P)
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_CutL)
+    apply(auto)[1]
+    apply(rule a_star_CutL)
+    apply(auto)[1]
+    done
+next
+  case a_NotR
+  then show ?case 
+    apply(auto)
+    apply(generate_fresh "coname")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutL)
+    apply(rule a_star_NotR)
+    apply(auto)[1]
+    apply(rule a_star_NotR)
+    apply(auto)[1]
+    done
+next
+  case a_NotL
+  then show ?case 
+    apply(auto)
+    apply(rule a_star_NotL)
+    apply(auto)[1]
+    done
+next
+  case a_AndR_l
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(generate_fresh "coname")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutL)
+    apply(rule a_star_AndR)
+    apply(auto)
+    apply(rule a_star_AndR)
+    apply(auto)
+    done
+next
+  case a_AndR_r
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(generate_fresh "coname")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutL)
+    apply(rule a_star_AndR)
+    apply(auto)
+    apply(rule a_star_AndR)
+    apply(auto)
+    done
+next
+  case a_AndL1
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_AndL1)
+    apply(auto)
+    done
+next
+  case a_AndL2
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_AndL2)
+    apply(auto)
+    done
+next
+  case a_OrR1
+  then show ?case 
+    apply(auto)
+    apply(generate_fresh "coname")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutL)
+    apply(rule a_star_OrR1)
+    apply(auto)[1]
+    apply(rule a_star_OrR1)
+    apply(auto)[1]
+    done
+next
+  case a_OrR2
+  then show ?case 
+    apply(auto)
+    apply(generate_fresh "coname")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutL)
+    apply(rule a_star_OrR2)
+    apply(auto)[1]
+    apply(rule a_star_OrR2)
+    apply(auto)[1]
+    done
+next
+  case a_OrL_l
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_OrL)
+    apply(auto)
+    done
+next
+  case a_OrL_r
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_OrL)
+    apply(auto)
+    done
+next
+  case a_ImpR
+  then show ?case 
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(generate_fresh "coname")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(simp add: subst_fresh)
+    apply(rule a_star_CutL)
+    apply(rule a_star_ImpR)
+    apply(auto)
+    apply(rule a_star_ImpR)
+    apply(auto)
+    done
+next
+  case a_ImpL_l
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_ImpL)
+    apply(auto)
+    done
+next
+  case a_ImpL_r
+  then show ?case
+    apply(auto simp add: subst_fresh fresh_a_redu)
+    apply(rule a_star_ImpL)
+    apply(auto)
+    done
+qed
+
+lemma a_star_subst1:
+  assumes a: "M \<longrightarrow>\<^isub>a* M'"
+  shows "M{y:=<c>.P} \<longrightarrow>\<^isub>a* M'{y:=<c>.P}"
+using a
+apply(induct)
+apply(blast)
+apply(drule_tac y="y" and c="c" and P="P" in a_redu_subst1)
+apply(auto)
+done
+
+lemma a_star_subst2:
+  assumes a: "M \<longrightarrow>\<^isub>a* M'"
+  shows "M{c:=(y).P} \<longrightarrow>\<^isub>a* M'{c:=(y).P}"
+using a
+apply(induct)
+apply(blast)
+apply(drule_tac y="y" and c="c" and P="P" in a_redu_subst2)
+apply(auto)
+done
+
+text {* Candidates and SN *}
+
+text {* SNa *}
+
+inductive 
+  SNa :: "trm \<Rightarrow> bool"
+where
+  SNaI: "(\<And>M'. M \<longrightarrow>\<^isub>a M' \<Longrightarrow> SNa M') \<Longrightarrow> SNa M"
+
+lemma SNa_induct[consumes 1]:
+  assumes major: "SNa M"
+  assumes hyp: "\<And>M'. SNa M' \<Longrightarrow> (\<forall>M''. M'\<longrightarrow>\<^isub>a M'' \<longrightarrow> P M'' \<Longrightarrow> P M')"
+  shows "P M"
+  apply (rule major[THEN SNa.induct])
+  apply (rule hyp)
+  apply (rule SNaI)
+  apply (blast)+
+  done
+
+
+lemma double_SNa_aux:
+  assumes a_SNa: "SNa a"
+  and b_SNa: "SNa b"
+  and hyp: "\<And>x z.
+    (\<And>y. x\<longrightarrow>\<^isub>a y \<Longrightarrow> SNa y) \<Longrightarrow>
+    (\<And>y. x\<longrightarrow>\<^isub>a y \<Longrightarrow> P y z) \<Longrightarrow>
+    (\<And>u. z\<longrightarrow>\<^isub>a u \<Longrightarrow> SNa u) \<Longrightarrow>
+    (\<And>u. z\<longrightarrow>\<^isub>a u \<Longrightarrow> P x u) \<Longrightarrow> P x z"
+  shows "P a b"
+proof -
+  from a_SNa
+  have r: "\<And>b. SNa b \<Longrightarrow> P a b"
+  proof (induct a rule: SNa.induct)
+    case (SNaI x)
+    note SNa' = this
+    have "SNa b" by fact
+    thus ?case
+    proof (induct b rule: SNa.induct)
+      case (SNaI y)
+      show ?case
+        apply (rule hyp)
+        apply (erule SNa')
+        apply (erule SNa')
+        apply (rule SNa.SNaI)
+        apply (erule SNaI)+
+        done
+    qed
+  qed
+  from b_SNa show ?thesis by (rule r)
+qed
+
+lemma double_SNa:
+  "\<lbrakk>SNa a; SNa b; \<forall>x z. ((\<forall>y. x\<longrightarrow>\<^isub>ay \<longrightarrow> P y z) \<and> (\<forall>u. z\<longrightarrow>\<^isub>a u \<longrightarrow> P x u)) \<longrightarrow> P x z\<rbrakk> \<Longrightarrow> P a b"
+apply(rule_tac double_SNa_aux)
+apply(assumption)+
+apply(blast)
+done
+
+lemma a_preserves_SNa:
+  assumes a: "SNa M" "M\<longrightarrow>\<^isub>a M'"
+  shows "SNa M'"
+using a 
+by (erule_tac SNa.cases) (simp)
+
+lemma a_star_preserves_SNa:
+  assumes a: "SNa M" and b: "M\<longrightarrow>\<^isub>a* M'"
+  shows "SNa M'"
+using b a
+by (induct) (auto simp add: a_preserves_SNa)
+
+lemma Ax_in_SNa:
+  shows "SNa (Ax x a)"
+apply(rule SNaI)
+apply(erule a_redu.cases, auto)
+apply(erule l_redu.cases, auto)
+apply(erule c_redu.cases, auto)
+done
+
+lemma NotL_in_SNa:
+  assumes a: "SNa M"
+  shows "SNa (NotL <a>.M x)"
+using a
+apply(induct)
+apply(rule SNaI)
+apply(erule a_redu.cases, auto)
+apply(erule l_redu.cases, auto)
+apply(erule c_redu.cases, auto)
+apply(auto simp add: trm.inject alpha)
+apply(rotate_tac 1)
+apply(drule_tac x="[(a,aa)]\<bullet>M'a" in meta_spec)
+apply(simp add: a_redu.eqvt)
+apply(subgoal_tac "NotL <a>.([(a,aa)]\<bullet>M'a) x = NotL <aa>.M'a x")
+apply(simp)
+apply(simp add: trm.inject alpha fresh_a_redu)
+done
+
+lemma NotR_in_SNa:
+  assumes a: "SNa M"
+  shows "SNa (NotR (x).M a)"
+using a
+apply(induct)
+apply(rule SNaI)
+apply(erule a_redu.cases, auto)
+apply(erule l_redu.cases, auto)
+apply(erule c_redu.cases, auto)
+apply(auto simp add: trm.inject alpha)
+apply(rotate_tac 1)
+apply(drule_tac x="[(x,xa)]\<bullet>M'a" in meta_spec)
+apply(simp add: a_redu.eqvt)
+apply(rule_tac s="NotR (x).([(x,xa)]\<bullet>M'a) a" in subst)
+apply(simp add: trm.inject alpha fresh_a_redu)
+apply(simp)
+done
+
+lemma AndL1_in_SNa:
+  assumes a: "SNa M"
+  shows "SNa (AndL1 (x).M y)"
+using a
+apply(induct)
+apply(rule SNaI)
+apply(erule a_redu.cases, auto)
+apply(erule l_redu.cases, auto)
+apply(erule c_redu.cases, auto)
+apply(auto simp add: trm.inject alpha)
+apply(rotate_tac 1)
+apply(drule_tac x="[(x,xa)]\<bullet>M'a" in meta_spec)
+apply(simp add: a_redu.eqvt)
+apply(rule_tac s="AndL1 x.([(x,xa)]\<bullet>M'a) y" in subst)
+apply(simp add: trm.inject alpha fresh_a_redu)
+apply(simp)
+done
+
+lemma AndL2_in_SNa:
+  assumes a: "SNa M"
+  shows "SNa (AndL2 (x).M y)"
+using a
+apply(induct)
+apply(rule SNaI)
+apply(erule a_redu.cases, auto)
+apply(erule l_redu.cases, auto)
+apply(erule c_redu.cases, auto)
+apply(auto simp add: trm.inject alpha)
+apply(rotate_tac 1)
+apply(drule_tac x="[(x,xa)]\<bullet>M'a" in meta_spec)
+apply(simp add: a_redu.eqvt)
+apply(rule_tac s="AndL2 x.([(x,xa)]\<bullet>M'a) y" in subst)
+apply(simp add: trm.inject alpha fresh_a_redu)
+apply(simp)
+done
+
+lemma OrR1_in_SNa:
+  assumes a: "SNa M"
+  shows "SNa (OrR1 <a>.M b)"
+using a
+apply(induct)
+apply(rule SNaI)
+apply(erule a_redu.cases, auto)
+apply(erule l_redu.cases, auto)
+apply(erule c_redu.cases, auto)
+apply(auto simp add: trm.inject alpha)
+apply(rotate_tac 1)
+apply(drule_tac x="[(a,aa)]\<bullet>M'a" in meta_spec)
+apply(simp add: a_redu.eqvt)
+apply(rule_tac s="OrR1 <a>.([(a,aa)]\<bullet>M'a) b" in subst)
+apply(simp add: trm.inject alpha fresh_a_redu)
+apply(simp)
+done
+
+lemma OrR2_in_SNa:
+  assumes a: "SNa M"
+  shows "SNa (OrR2 <a>.M b)"
+using a
+apply(induct)
+apply(rule SNaI)
+apply(erule a_redu.cases, auto)
+apply(erule l_redu.cases, auto)
+apply(erule c_redu.cases, auto)
+apply(auto simp add: trm.inject alpha)
+apply(rotate_tac 1)
+apply(drule_tac x="[(a,aa)]\<bullet>M'a" in meta_spec)
+apply(simp add: a_redu.eqvt)
+apply(rule_tac s="OrR2 <a>.([(a,aa)]\<bullet>M'a) b" in subst)
+apply(simp add: trm.inject alpha fresh_a_redu)
+apply(simp)
+done
+
+lemma ImpR_in_SNa:
+  assumes a: "SNa M"
+  shows "SNa (ImpR (x).<a>.M b)"
+using a
+apply(induct)
+apply(rule SNaI)
+apply(erule a_redu.cases, auto)
+apply(erule l_redu.cases, auto)
+apply(erule c_redu.cases, auto)
+apply(auto simp add: trm.inject alpha abs_fresh abs_perm calc_atm)
+apply(rotate_tac 1)
+apply(drule_tac x="[(a,aa)]\<bullet>M'a" in meta_spec)
+apply(simp add: a_redu.eqvt)
+apply(rule_tac s="ImpR (x).<a>.([(a,aa)]\<bullet>M'a) b" in subst)
+apply(simp add: trm.inject alpha fresh_a_redu)
+apply(simp)
+apply(rotate_tac 1)
+apply(drule_tac x="[(x,xa)]\<bullet>M'a" in meta_spec)
+apply(simp add: a_redu.eqvt)
+apply(rule_tac s="ImpR (x).<a>.([(x,xa)]\<bullet>M'a) b" in subst)
+apply(simp add: trm.inject alpha fresh_a_redu abs_fresh abs_perm calc_atm)
+apply(simp)
+apply(rotate_tac 1)
+apply(drule_tac x="[(a,aa)]\<bullet>[(x,xa)]\<bullet>M'a" in meta_spec)
+apply(simp add: a_redu.eqvt)
+apply(rule_tac s="ImpR (x).<a>.([(a,aa)]\<bullet>[(x,xa)]\<bullet>M'a) b" in subst)
+apply(simp add: trm.inject alpha fresh_a_redu abs_fresh abs_perm calc_atm)
+apply(simp add: fresh_left calc_atm fresh_a_redu)
+apply(simp)
+done
+
+lemma AndR_in_SNa:
+  assumes a: "SNa M" "SNa N"
+  shows "SNa (AndR <a>.M <b>.N c)"
+apply(rule_tac a="M" and b="N" in double_SNa)
+apply(rule a)+
+apply(auto)
+apply(rule SNaI)
+apply(drule a_redu_AndR_elim)
+apply(auto)
+done
+
+lemma OrL_in_SNa:
+  assumes a: "SNa M" "SNa N"
+  shows "SNa (OrL (x).M (y).N z)"
+apply(rule_tac a="M" and b="N" in double_SNa)
+apply(rule a)+
+apply(auto)
+apply(rule SNaI)
+apply(drule a_redu_OrL_elim)
+apply(auto)
+done
+
+lemma ImpL_in_SNa:
+  assumes a: "SNa M" "SNa N"
+  shows "SNa (ImpL <a>.M (y).N z)"
+apply(rule_tac a="M" and b="N" in double_SNa)
+apply(rule a)+
+apply(auto)
+apply(rule SNaI)
+apply(drule a_redu_ImpL_elim)
+apply(auto)
+done
+
+lemma SNa_eqvt:
+  fixes pi1::"name prm"
+  and   pi2::"coname prm"
+  shows "SNa M \<Longrightarrow> SNa (pi1\<bullet>M)"
+  and   "SNa M \<Longrightarrow> SNa (pi2\<bullet>M)"
+apply -
+apply(induct rule: SNa.induct)
+apply(rule SNaI)
+apply(drule_tac pi="(rev pi1)" in a_redu.eqvt(1))
+apply(rotate_tac 1)
+apply(drule_tac x="(rev pi1)\<bullet>M'" in meta_spec)
+apply(perm_simp)
+apply(induct rule: SNa.induct)
+apply(rule SNaI)
+apply(drule_tac pi="(rev pi2)" in a_redu.eqvt(2))
+apply(rotate_tac 1)
+apply(drule_tac x="(rev pi2)\<bullet>M'" in meta_spec)
+apply(perm_simp)
+done
+
+text {* set operators *}
+
+definition AXIOMSn :: "ty \<Rightarrow> ntrm set" where
+  "AXIOMSn B \<equiv> { (x):(Ax y b) | x y b. True }"
+
+definition AXIOMSc::"ty \<Rightarrow> ctrm set" where
+  "AXIOMSc B \<equiv> { <a>:(Ax y b) | a y b. True }"
+
+definition BINDINGn::"ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set" where
+  "BINDINGn B X \<equiv> { (x):M | x M. \<forall>a P. <a>:P\<in>X \<longrightarrow> SNa (M{x:=<a>.P})}"
+
+definition BINDINGc::"ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set" where
+  "BINDINGc B X \<equiv> { <a>:M | a M. \<forall>x P. (x):P\<in>X \<longrightarrow> SNa (M{a:=(x).P})}"
+
+lemma BINDINGn_decreasing:
+  shows "X\<subseteq>Y \<Longrightarrow> BINDINGn B Y \<subseteq> BINDINGn B X"
+by (simp add: BINDINGn_def) (blast) 
+
+lemma BINDINGc_decreasing:
+  shows "X\<subseteq>Y \<Longrightarrow> BINDINGc B Y \<subseteq> BINDINGc B X"
+by (simp add: BINDINGc_def) (blast) 
+  
+nominal_primrec
+  NOTRIGHT :: "ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set"
+where
+ "NOTRIGHT (NOT B) X = { <a>:NotR (x).M a | a x M. fic (NotR (x).M a) a \<and> (x):M \<in> X }"
+apply(rule TrueI)+
+done
+
+lemma NOTRIGHT_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(NOTRIGHT (NOT B) X)) = NOTRIGHT (NOT B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>a" in exI) 
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(1))
+apply(simp)
+apply(rule_tac x="(xb):M" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>(<a>:NotR (xa).M a)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fic.eqvt(1))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp add: swap_simps)
+done
+
+lemma NOTRIGHT_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(NOTRIGHT (NOT B) X)) = NOTRIGHT (NOT B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>a" in exI) 
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(2))
+apply(simp)
+apply(rule_tac x="(xb):M" in exI)
+apply(simp)
+apply(rule_tac x="<((rev pi)\<bullet>a)>:NotR ((rev pi)\<bullet>xa).((rev pi)\<bullet>M) ((rev pi)\<bullet>a)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fic.eqvt(2))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: swap_simps)
+done
+  
+nominal_primrec
+  NOTLEFT :: "ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set"
+where
+ "NOTLEFT (NOT B) X = { (x):NotL <a>.M x | a x M. fin (NotL <a>.M x) x \<and> <a>:M \<in> X }"
+apply(rule TrueI)+
+done
+
+lemma NOTLEFT_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(NOTLEFT (NOT B) X)) = NOTLEFT (NOT B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>a" in exI) 
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(1))
+apply(simp)
+apply(rule_tac x="<a>:M" in exI)
+apply(simp)
+apply(rule_tac x="(((rev pi)\<bullet>xa)):NotL <((rev pi)\<bullet>a)>.((rev pi)\<bullet>M) ((rev pi)\<bullet>xa)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fin.eqvt(1))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp add: swap_simps)
+done
+
+lemma NOTLEFT_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(NOTLEFT (NOT B) X)) = NOTLEFT (NOT B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>a" in exI) 
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(2))
+apply(simp)
+apply(rule_tac x="<a>:M" in exI)
+apply(simp)
+apply(rule_tac x="(((rev pi)\<bullet>xa)):NotL <((rev pi)\<bullet>a)>.((rev pi)\<bullet>M) ((rev pi)\<bullet>xa)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fin.eqvt(2))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: swap_simps)
+done
+  
+nominal_primrec
+  ANDRIGHT :: "ty \<Rightarrow> ctrm set \<Rightarrow> ctrm set \<Rightarrow> ctrm set"
+where
+ "ANDRIGHT (B AND C) X Y = 
+            { <c>:AndR <a>.M <b>.N c | c a b M N. fic (AndR <a>.M <b>.N c) c \<and> <a>:M \<in> X \<and> <b>:N \<in> Y }"
+apply(rule TrueI)+
+done
+
+lemma ANDRIGHT_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(ANDRIGHT (A AND B) X Y)) = ANDRIGHT (A AND B) (pi\<bullet>X) (pi\<bullet>Y)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>c" in exI)
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>b" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(rule_tac x="pi\<bullet>N" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(1))
+apply(simp)
+apply(rule conjI)
+apply(rule_tac x="<a>:M" in exI)
+apply(simp)
+apply(rule_tac x="<b>:N" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>(<c>:AndR <a>.M <b>.N c)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>c" in exI)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI)
+apply(rule_tac x="(rev pi)\<bullet>b" in exI)
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(rule_tac x="(rev pi)\<bullet>N" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fic.eqvt(1))
+apply(simp)
+apply(drule sym)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp add: swap_simps)
+done
+
+lemma ANDRIGHT_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(ANDRIGHT (A AND B) X Y)) = ANDRIGHT (A AND B) (pi\<bullet>X) (pi\<bullet>Y)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>c" in exI)
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>b" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(rule_tac x="pi\<bullet>N" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(2))
+apply(simp)
+apply(rule conjI)
+apply(rule_tac x="<a>:M" in exI)
+apply(simp)
+apply(rule_tac x="<b>:N" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>(<c>:AndR <a>.M <b>.N c)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>c" in exI)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI)
+apply(rule_tac x="(rev pi)\<bullet>b" in exI)
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(rule_tac x="(rev pi)\<bullet>N" in exI)
+apply(simp)
+apply(drule_tac pi="rev pi" in fic.eqvt(2))
+apply(simp)
+apply(drule sym)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp)
+done
+
+nominal_primrec
+  ANDLEFT1 :: "ty \<Rightarrow> ntrm set \<Rightarrow> ntrm set"
+where
+ "ANDLEFT1 (B AND C) X = { (y):AndL1 (x).M y | x y M. fin (AndL1 (x).M y) y \<and> (x):M \<in> X }"
+apply(rule TrueI)+
+done
+
+lemma ANDLEFT1_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(ANDLEFT1 (A AND B) X)) = ANDLEFT1 (A AND B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>y" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(1))
+apply(simp)
+apply(rule_tac x="(xb):M" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>((y):AndL1 (xa).M y)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>y" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp)
+apply(drule_tac pi="rev pi" in fin.eqvt(1))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp)
+done
+
+lemma ANDLEFT1_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(ANDLEFT1 (A AND B) X)) = ANDLEFT1 (A AND B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>y" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(2))
+apply(simp)
+apply(rule_tac x="(xb):M" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>((y):AndL1 (xa).M y)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>y" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fin.eqvt(2))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: swap_simps)
+done
+
+nominal_primrec
+  ANDLEFT2 :: "ty \<Rightarrow> ntrm set \<Rightarrow> ntrm set"
+where
+ "ANDLEFT2 (B AND C) X = { (y):AndL2 (x).M y | x y M. fin (AndL2 (x).M y) y \<and> (x):M \<in> X }"
+apply(rule TrueI)+
+done
+
+lemma ANDLEFT2_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(ANDLEFT2 (A AND B) X)) = ANDLEFT2 (A AND B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>y" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(1))
+apply(simp)
+apply(rule_tac x="(xb):M" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>((y):AndL2 (xa).M y)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>y" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp)
+apply(drule_tac pi="rev pi" in fin.eqvt(1))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp)
+done
+
+lemma ANDLEFT2_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(ANDLEFT2 (A AND B) X)) = ANDLEFT2 (A AND B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>y" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(2))
+apply(simp)
+apply(rule_tac x="(xb):M" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>((y):AndL2 (xa).M y)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>y" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fin.eqvt(2))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: swap_simps)
+done
+
+nominal_primrec
+  ORLEFT :: "ty \<Rightarrow> ntrm set \<Rightarrow> ntrm set \<Rightarrow> ntrm set"
+where
+ "ORLEFT (B OR C) X Y = 
+            { (z):OrL (x).M (y).N z | x y z M N. fin (OrL (x).M (y).N z) z \<and> (x):M \<in> X \<and> (y):N \<in> Y }"
+apply(rule TrueI)+
+done
+
+lemma ORLEFT_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(ORLEFT (A OR B) X Y)) = ORLEFT (A OR B) (pi\<bullet>X) (pi\<bullet>Y)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI)
+apply(rule_tac x="pi\<bullet>y" in exI)
+apply(rule_tac x="pi\<bullet>z" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(rule_tac x="pi\<bullet>N" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(1))
+apply(simp)
+apply(rule conjI)
+apply(rule_tac x="(xb):M" in exI)
+apply(simp)
+apply(rule_tac x="(y):N" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>((z):OrL (xa).M (y).N z)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI)
+apply(rule_tac x="(rev pi)\<bullet>y" in exI)
+apply(rule_tac x="(rev pi)\<bullet>z" in exI)
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(rule_tac x="(rev pi)\<bullet>N" in exI)
+apply(simp)
+apply(drule_tac pi="rev pi" in fin.eqvt(1))
+apply(simp)
+apply(drule sym)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp)
+done
+
+lemma ORLEFT_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(ORLEFT (A OR B) X Y)) = ORLEFT (A OR B) (pi\<bullet>X) (pi\<bullet>Y)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI)
+apply(rule_tac x="pi\<bullet>y" in exI)
+apply(rule_tac x="pi\<bullet>z" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(rule_tac x="pi\<bullet>N" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(2))
+apply(simp)
+apply(rule conjI)
+apply(rule_tac x="(xb):M" in exI)
+apply(simp)
+apply(rule_tac x="(y):N" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>((z):OrL (xa).M (y).N z)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI)
+apply(rule_tac x="(rev pi)\<bullet>y" in exI)
+apply(rule_tac x="(rev pi)\<bullet>z" in exI)
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(rule_tac x="(rev pi)\<bullet>N" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fin.eqvt(2))
+apply(simp)
+apply(drule sym)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: swap_simps)
+done
+
+nominal_primrec
+  ORRIGHT1 :: "ty \<Rightarrow> ctrm set \<Rightarrow> ctrm set"
+where
+ "ORRIGHT1 (B OR C) X = { <b>:OrR1 <a>.M b | a b M. fic (OrR1 <a>.M b) b \<and> <a>:M \<in> X }"
+apply(rule TrueI)+
+done
+
+lemma ORRIGHT1_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(ORRIGHT1 (A OR B) X)) = ORRIGHT1 (A OR B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>a" in exI) 
+apply(rule_tac x="pi\<bullet>b" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(1))
+apply(simp)
+apply(rule_tac x="<a>:M" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>(<b>:OrR1 <a>.M b)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>b" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fic.eqvt(1))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp add: swap_simps)
+done
+
+lemma ORRIGHT1_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(ORRIGHT1 (A OR B) X)) = ORRIGHT1 (A OR B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>a" in exI) 
+apply(rule_tac x="pi\<bullet>b" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(2))
+apply(simp)
+apply(rule_tac x="<a>:M" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>(<b>:OrR1 <a>.M b)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>b" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp)
+apply(drule_tac pi="rev pi" in fic.eqvt(2))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp)
+done
+
+nominal_primrec
+  ORRIGHT2 :: "ty \<Rightarrow> ctrm set \<Rightarrow> ctrm set"
+where
+ "ORRIGHT2 (B OR C) X = { <b>:OrR2 <a>.M b | a b M. fic (OrR2 <a>.M b) b \<and> <a>:M \<in> X }"
+apply(rule TrueI)+
+done
+
+lemma ORRIGHT2_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(ORRIGHT2 (A OR B) X)) = ORRIGHT2 (A OR B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>a" in exI) 
+apply(rule_tac x="pi\<bullet>b" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(1))
+apply(simp)
+apply(rule_tac x="<a>:M" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>(<b>:OrR2 <a>.M b)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>b" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fic.eqvt(1))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp add: swap_simps)
+done
+
+lemma ORRIGHT2_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(ORRIGHT2 (A OR B) X)) = ORRIGHT2 (A OR B) (pi\<bullet>X)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>a" in exI) 
+apply(rule_tac x="pi\<bullet>b" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(2))
+apply(simp)
+apply(rule_tac x="<a>:M" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>(<b>:OrR2 <a>.M b)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>b" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp)
+apply(drule_tac pi="rev pi" in fic.eqvt(2))
+apply(simp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp)
+done
+
+nominal_primrec
+  IMPRIGHT :: "ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set \<Rightarrow> ntrm set \<Rightarrow> ctrm set \<Rightarrow> ctrm set"
+where
+ "IMPRIGHT (B IMP C) X Y Z U= 
+        { <b>:ImpR (x).<a>.M b | x a b M. fic (ImpR (x).<a>.M b) b 
+                                        \<and> (\<forall>z P. x\<sharp>(z,P) \<and> (z):P \<in> Z \<longrightarrow> (x):(M{a:=(z).P}) \<in> X)
+                                        \<and> (\<forall>c Q. a\<sharp>(c,Q) \<and> <c>:Q \<in> U \<longrightarrow> <a>:(M{x:=<c>.Q}) \<in> Y)}"
+apply(rule TrueI)+
+done
+
+lemma IMPRIGHT_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(IMPRIGHT (A IMP B) X Y Z U)) = IMPRIGHT (A IMP B) (pi\<bullet>X) (pi\<bullet>Y) (pi\<bullet>Z) (pi\<bullet>U)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI)
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>b" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(1))
+apply(simp)
+apply(rule conjI)
+apply(auto)[1]
+apply(rule_tac x="(xb):(M{a:=((rev pi)\<bullet>z).((rev pi)\<bullet>P)})" in exI)
+apply(perm_simp add: csubst_eqvt)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp)
+apply(simp add: fresh_right)
+apply(auto)[1]
+apply(rule_tac x="<a>:(M{xb:=<((rev pi)\<bullet>c)>.((rev pi)\<bullet>Q)})" in exI)
+apply(perm_simp add: nsubst_eqvt)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp add: swap_simps fresh_left)
+apply(rule_tac x="(rev pi)\<bullet>(<b>:ImpR xa.<a>.M b)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI)
+apply(rule_tac x="(rev pi)\<bullet>b" in exI)
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fic.eqvt(1))
+apply(simp add: swap_simps)
+apply(rule conjI)
+apply(auto)[1]
+apply(drule_tac x="pi\<bullet>z" in spec)
+apply(drule_tac x="pi\<bullet>P" in spec)
+apply(drule mp)
+apply(simp add: fresh_right)
+apply(rule_tac x="(z):P" in exI)
+apply(simp)
+apply(auto)[1]
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: csubst_eqvt fresh_right)
+apply(auto)[1]
+apply(drule_tac x="pi\<bullet>c" in spec)
+apply(drule_tac x="pi\<bullet>Q" in spec)
+apply(drule mp)
+apply(simp add: swap_simps fresh_left)
+apply(rule_tac x="<c>:Q" in exI)
+apply(simp add: swap_simps)
+apply(auto)[1]
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: nsubst_eqvt)
+done
+
+lemma IMPRIGHT_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(IMPRIGHT (A IMP B) X Y Z U)) = IMPRIGHT (A IMP B) (pi\<bullet>X) (pi\<bullet>Y) (pi\<bullet>Z) (pi\<bullet>U)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI)
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>b" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fic.eqvt(2))
+apply(simp)
+apply(rule conjI)
+apply(auto)[1]
+apply(rule_tac x="(xb):(M{a:=((rev pi)\<bullet>z).((rev pi)\<bullet>P)})" in exI)
+apply(perm_simp add: csubst_eqvt)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: swap_simps fresh_left)
+apply(auto)[1]
+apply(rule_tac x="<a>:(M{xb:=<((rev pi)\<bullet>c)>.((rev pi)\<bullet>Q)})" in exI)
+apply(perm_simp add: nsubst_eqvt)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: fresh_right)
+apply(rule_tac x="(rev pi)\<bullet>(<b>:ImpR xa.<a>.M b)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI)
+apply(rule_tac x="(rev pi)\<bullet>a" in exI)
+apply(rule_tac x="(rev pi)\<bullet>b" in exI)
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fic.eqvt(2))
+apply(simp add: swap_simps)
+apply(rule conjI)
+apply(auto)[1]
+apply(drule_tac x="pi\<bullet>z" in spec)
+apply(drule_tac x="pi\<bullet>P" in spec)
+apply(simp add: swap_simps fresh_left)
+apply(drule mp)
+apply(rule_tac x="(z):P" in exI)
+apply(simp add: swap_simps)
+apply(auto)[1]
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: csubst_eqvt fresh_right)
+apply(auto)[1]
+apply(drule_tac x="pi\<bullet>c" in spec)
+apply(drule_tac x="pi\<bullet>Q" in spec)
+apply(simp add: fresh_right)
+apply(drule mp)
+apply(rule_tac x="<c>:Q" in exI)
+apply(simp)
+apply(auto)[1]
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: nsubst_eqvt fresh_right)
+done
+
+nominal_primrec
+  IMPLEFT :: "ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set \<Rightarrow> ntrm set"
+where
+ "IMPLEFT (B IMP C) X Y = 
+        { (y):ImpL <a>.M (x).N y | x a y M N. fin (ImpL <a>.M (x).N y) y \<and> <a>:M \<in> X \<and> (x):N \<in> Y }"
+apply(rule TrueI)+
+done
+
+lemma IMPLEFT_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(IMPLEFT (A IMP B) X Y)) = IMPLEFT (A IMP B) (pi\<bullet>X) (pi\<bullet>Y)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>y" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI) 
+apply(rule_tac x="pi\<bullet>N" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(1))
+apply(simp)
+apply(rule conjI)
+apply(rule_tac x="<a>:M" in exI)
+apply(simp)
+apply(rule_tac x="(xb):N" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>((y):ImpL <a>.M (xa).N y)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>y" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(rule_tac x="(rev pi)\<bullet>N" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fin.eqvt(1))
+apply(simp)
+apply(drule sym)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp add: swap_simps)
+done
+
+lemma IMPLEFT_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(IMPLEFT (A IMP B) X Y)) = IMPLEFT (A IMP B) (pi\<bullet>X) (pi\<bullet>Y)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI) 
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>y" in exI) 
+apply(rule_tac x="pi\<bullet>M" in exI) 
+apply(rule_tac x="pi\<bullet>N" in exI)
+apply(simp)
+apply(rule conjI)
+apply(drule_tac pi="pi" in fin.eqvt(2))
+apply(simp)
+apply(rule conjI)
+apply(rule_tac x="<a>:M" in exI)
+apply(simp)
+apply(rule_tac x="(xb):N" in exI)
+apply(simp)
+apply(rule_tac x="(rev pi)\<bullet>((y):ImpL <a>.M (xa).N y)" in exI)
+apply(perm_simp)
+apply(rule_tac x="(rev pi)\<bullet>xa" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>a" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>y" in exI) 
+apply(rule_tac x="(rev pi)\<bullet>M" in exI)
+apply(rule_tac x="(rev pi)\<bullet>N" in exI)
+apply(simp add: swap_simps)
+apply(drule_tac pi="rev pi" in fin.eqvt(2))
+apply(simp)
+apply(drule sym)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: swap_simps)
+done
+
+lemma sum_cases:
+ shows "(\<exists>y. x=Inl y) \<or> (\<exists>y. x=Inr y)"
+apply(rule_tac s="x" in sumE)
+apply(auto)
+done
+
+function
+  NEGc::"ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set"
+and
+  NEGn::"ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set"
+where
+  "NEGc (PR A)    X = AXIOMSc (PR A) \<union> BINDINGc (PR A) X"  
+| "NEGc (NOT C)   X = AXIOMSc (NOT C) \<union> BINDINGc (NOT C) X 
+                         \<union> NOTRIGHT (NOT C) (lfp (NEGn C \<circ> NEGc C))"  
+| "NEGc (C AND D) X = AXIOMSc (C AND D) \<union> BINDINGc (C AND D) X 
+                     \<union> ANDRIGHT (C AND D) (NEGc C (lfp (NEGn C \<circ> NEGc C))) (NEGc D (lfp (NEGn D \<circ> NEGc D)))"
+| "NEGc (C OR D)  X = AXIOMSc (C OR D) \<union> BINDINGc (C OR D) X  
+                         \<union> ORRIGHT1 (C OR D) (NEGc C (lfp (NEGn C \<circ> NEGc C))) 
+                         \<union> ORRIGHT2 (C OR D) (NEGc D (lfp (NEGn D \<circ> NEGc D)))"
+| "NEGc (C IMP D) X = AXIOMSc (C IMP D) \<union> BINDINGc (C IMP D) X 
+    \<union> IMPRIGHT (C IMP D) (lfp (NEGn C \<circ> NEGc C)) (NEGc D (lfp (NEGn D \<circ> NEGc D))) 
+                          (lfp (NEGn D \<circ> NEGc D)) (NEGc C (lfp (NEGn C \<circ> NEGc C)))"
+| "NEGn (PR A)    X = AXIOMSn (PR A) \<union> BINDINGn (PR A) X"   
+| "NEGn (NOT C)   X = AXIOMSn (NOT C) \<union> BINDINGn (NOT C) X 
+                         \<union> NOTLEFT (NOT C) (NEGc C (lfp (NEGn C \<circ> NEGc C)))"  
+| "NEGn (C AND D) X = AXIOMSn (C AND D) \<union> BINDINGn (C AND D) X 
+                         \<union> ANDLEFT1 (C AND D) (lfp (NEGn C \<circ> NEGc C)) 
+                         \<union> ANDLEFT2 (C AND D) (lfp (NEGn D \<circ> NEGc D))"
+| "NEGn (C OR D)  X = AXIOMSn (C OR D) \<union> BINDINGn (C OR D) X 
+                         \<union> ORLEFT (C OR D) (lfp (NEGn C \<circ> NEGc C)) (lfp (NEGn D \<circ> NEGc D))"
+| "NEGn (C IMP D) X = AXIOMSn (C IMP D) \<union> BINDINGn (C IMP D) X 
+                         \<union> IMPLEFT (C IMP D) (NEGc C (lfp (NEGn C \<circ> NEGc C))) (lfp (NEGn D \<circ> NEGc D))"
+using ty_cases sum_cases 
+apply(auto simp add: ty.inject)
+apply(drule_tac x="x" in meta_spec)
+apply(auto simp add: ty.inject)
+apply(rotate_tac 10)
+apply(drule_tac x="a" in meta_spec)
+apply(auto simp add: ty.inject)
+apply(blast)
+apply(blast)
+apply(blast)
+apply(rotate_tac 10)
+apply(drule_tac x="a" in meta_spec)
+apply(auto simp add: ty.inject)
+apply(blast)
+apply(blast)
+apply(blast)
+done
+
+termination
+apply(relation "measure (sum_case (size\<circ>fst) (size\<circ>fst))")
+apply(simp_all)
+done
+
+text {* Candidates *}
+
+lemma test1:
+  shows "x\<in>(X\<union>Y) = (x\<in>X \<or> x\<in>Y)"
+by blast
+
+lemma test2:
+  shows "x\<in>(X\<inter>Y) = (x\<in>X \<and> x\<in>Y)"
+by blast
+
+lemma big_inter_eqvt:
+  fixes pi1::"name prm"
+  and   X::"('a::pt_name) set set"
+  and   pi2::"coname prm"
+  and   Y::"('b::pt_coname) set set"
+  shows "(pi1\<bullet>(\<Inter> X)) = \<Inter> (pi1\<bullet>X)"
+  and   "(pi2\<bullet>(\<Inter> Y)) = \<Inter> (pi2\<bullet>Y)"
+apply(auto simp add: perm_set_eq)
+apply(rule_tac x="(rev pi1)\<bullet>x" in exI)
+apply(perm_simp)
+apply(rule ballI)
+apply(drule_tac x="pi1\<bullet>xa" in spec)
+apply(auto)
+apply(drule_tac x="xa" in spec)
+apply(auto)[1]
+apply(rule_tac x="(rev pi1)\<bullet>xb" in exI)
+apply(perm_simp)
+apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp add: pt_set_bij[OF pt_name_inst, OF at_name_inst])
+apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst])
+apply(rule_tac x="(rev pi2)\<bullet>x" in exI)
+apply(perm_simp)
+apply(rule ballI)
+apply(drule_tac x="pi2\<bullet>xa" in spec)
+apply(auto)
+apply(drule_tac x="xa" in spec)
+apply(auto)[1]
+apply(rule_tac x="(rev pi2)\<bullet>xb" in exI)
+apply(perm_simp)
+apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: pt_set_bij[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst])
+done
+
+lemma lfp_eqvt:
+  fixes pi1::"name prm"
+  and   f::"'a set \<Rightarrow> ('a::pt_name) set"
+  and   pi2::"coname prm"
+  and   g::"'b set \<Rightarrow> ('b::pt_coname) set"
+  shows "pi1\<bullet>(lfp f) = lfp (pi1\<bullet>f)"
+  and   "pi2\<bullet>(lfp g) = lfp (pi2\<bullet>g)"
+apply(simp add: lfp_def)
+apply(simp add: big_inter_eqvt)
+apply(simp add: pt_Collect_eqvt[OF pt_name_inst, OF at_name_inst])
+apply(subgoal_tac "{u. (pi1\<bullet>f) u \<subseteq> u} = {u. ((rev pi1)\<bullet>((pi1\<bullet>f) u)) \<subseteq> ((rev pi1)\<bullet>u)}")
+apply(perm_simp)
+apply(rule Collect_cong)
+apply(rule iffI)
+apply(rule subseteq_eqvt(1)[THEN iffD1])
+apply(simp add: perm_bool)
+apply(drule subseteq_eqvt(1)[THEN iffD2])
+apply(simp add: perm_bool)
+apply(simp add: lfp_def)
+apply(simp add: big_inter_eqvt)
+apply(simp add: pt_Collect_eqvt[OF pt_coname_inst, OF at_coname_inst])
+apply(subgoal_tac "{u. (pi2\<bullet>g) u \<subseteq> u} = {u. ((rev pi2)\<bullet>((pi2\<bullet>g) u)) \<subseteq> ((rev pi2)\<bullet>u)}")
+apply(perm_simp)
+apply(rule Collect_cong)
+apply(rule iffI)
+apply(rule subseteq_eqvt(2)[THEN iffD1])
+apply(simp add: perm_bool)
+apply(drule subseteq_eqvt(2)[THEN iffD2])
+apply(simp add: perm_bool)
+done
+
+abbreviation
+  CANDn::"ty \<Rightarrow> ntrm set"  ("\<parallel>'(_')\<parallel>" [60] 60) 
+where
+  "\<parallel>(B)\<parallel> \<equiv> lfp (NEGn B \<circ> NEGc B)" 
+
+abbreviation
+  CANDc::"ty \<Rightarrow> ctrm set"  ("\<parallel><_>\<parallel>" [60] 60)
+where
+  "\<parallel><B>\<parallel> \<equiv> NEGc B (\<parallel>(B)\<parallel>)"
+
+lemma NEGn_decreasing:
+  shows "X\<subseteq>Y \<Longrightarrow> NEGn B Y \<subseteq> NEGn B X"
+by (nominal_induct B rule: ty.strong_induct)
+   (auto dest: BINDINGn_decreasing)
+
+lemma NEGc_decreasing:
+  shows "X\<subseteq>Y \<Longrightarrow> NEGc B Y \<subseteq> NEGc B X"
+by (nominal_induct B rule: ty.strong_induct)
+   (auto dest: BINDINGc_decreasing)
+
+lemma mono_NEGn_NEGc:
+  shows "mono (NEGn B \<circ> NEGc B)"
+  and   "mono (NEGc B \<circ> NEGn B)"
+proof -
+  have "\<forall>X Y. X\<subseteq>Y \<longrightarrow> NEGn B (NEGc B X) \<subseteq> NEGn B (NEGc B Y)"
+  proof (intro strip)
+    fix X::"ntrm set" and Y::"ntrm set"
+    assume "X\<subseteq>Y"
+    then have "NEGc B Y \<subseteq> NEGc B X" by (simp add: NEGc_decreasing)
+    then show "NEGn B (NEGc B X) \<subseteq> NEGn B (NEGc B Y)" by (simp add: NEGn_decreasing)
+  qed
+  then show "mono (NEGn B \<circ> NEGc B)" by (simp add: mono_def)
+next
+  have "\<forall>X Y. X\<subseteq>Y \<longrightarrow> NEGc B (NEGn B X) \<subseteq> NEGc B (NEGn B Y)"
+  proof (intro strip)
+    fix X::"ctrm set" and Y::"ctrm set"
+    assume "X\<subseteq>Y"
+    then have "NEGn B Y \<subseteq> NEGn B X" by (simp add: NEGn_decreasing)
+    then show "NEGc B (NEGn B X) \<subseteq> NEGc B (NEGn B Y)" by (simp add: NEGc_decreasing)
+  qed
+  then show "mono (NEGc B \<circ> NEGn B)" by (simp add: mono_def)
+qed
+
+lemma NEG_simp:
+  shows "\<parallel><B>\<parallel> = NEGc B (\<parallel>(B)\<parallel>)"
+  and   "\<parallel>(B)\<parallel> = NEGn B (\<parallel><B>\<parallel>)"
+proof -
+  show "\<parallel><B>\<parallel> = NEGc B (\<parallel>(B)\<parallel>)" by simp
+next
+  have "\<parallel>(B)\<parallel> \<equiv> lfp (NEGn B \<circ> NEGc B)" by simp
+  then have "\<parallel>(B)\<parallel> = (NEGn B \<circ> NEGc B) (\<parallel>(B)\<parallel>)" using mono_NEGn_NEGc def_lfp_unfold by blast
+  then show "\<parallel>(B)\<parallel> = NEGn B (\<parallel><B>\<parallel>)" by simp
+qed
+
+lemma NEG_elim:
+  shows "M \<in> \<parallel><B>\<parallel> \<Longrightarrow> M \<in> NEGc B (\<parallel>(B)\<parallel>)"
+  and   "N \<in> \<parallel>(B)\<parallel> \<Longrightarrow> N \<in> NEGn B (\<parallel><B>\<parallel>)"
+using NEG_simp by (blast)+
+
+lemma NEG_intro:
+  shows "M \<in> NEGc B (\<parallel>(B)\<parallel>) \<Longrightarrow> M \<in> \<parallel><B>\<parallel>"
+  and   "N \<in> NEGn B (\<parallel><B>\<parallel>) \<Longrightarrow> N \<in> \<parallel>(B)\<parallel>"
+using NEG_simp by (blast)+
+
+lemma NEGc_simps:
+  shows "NEGc (PR A) (\<parallel>(PR A)\<parallel>) = AXIOMSc (PR A) \<union> BINDINGc (PR A) (\<parallel>(PR A)\<parallel>)"  
+  and   "NEGc (NOT C) (\<parallel>(NOT C)\<parallel>) = AXIOMSc (NOT C) \<union> BINDINGc (NOT C) (\<parallel>(NOT C)\<parallel>) 
+                                        \<union> (NOTRIGHT (NOT C) (\<parallel>(C)\<parallel>))"  
+  and   "NEGc (C AND D) (\<parallel>(C AND D)\<parallel>) = AXIOMSc (C AND D) \<union> BINDINGc (C AND D) (\<parallel>(C AND D)\<parallel>) 
+                                        \<union> (ANDRIGHT (C AND D) (\<parallel><C>\<parallel>) (\<parallel><D>\<parallel>))"
+  and   "NEGc (C OR D) (\<parallel>(C OR D)\<parallel>) = AXIOMSc (C OR D) \<union> BINDINGc (C OR D)  (\<parallel>(C OR D)\<parallel>)
+                                        \<union> (ORRIGHT1 (C OR D) (\<parallel><C>\<parallel>)) \<union> (ORRIGHT2 (C OR D) (\<parallel><D>\<parallel>))"
+  and   "NEGc (C IMP D) (\<parallel>(C IMP D)\<parallel>) = AXIOMSc (C IMP D) \<union> BINDINGc (C IMP D) (\<parallel>(C IMP D)\<parallel>) 
+          \<union> (IMPRIGHT (C IMP D) (\<parallel>(C)\<parallel>) (\<parallel><D>\<parallel>) (\<parallel>(D)\<parallel>) (\<parallel><C>\<parallel>))"
+by (simp_all only: NEGc.simps)
+
+lemma AXIOMS_in_CANDs:
+  shows "AXIOMSn B \<subseteq> (\<parallel>(B)\<parallel>)"
+  and   "AXIOMSc B \<subseteq> (\<parallel><B>\<parallel>)"
+proof -
+  have "AXIOMSn B \<subseteq> NEGn B (\<parallel><B>\<parallel>)"
+    by (nominal_induct B rule: ty.strong_induct) (auto)
+  then show "AXIOMSn B \<subseteq> \<parallel>(B)\<parallel>" using NEG_simp by blast
+next
+  have "AXIOMSc B \<subseteq> NEGc B (\<parallel>(B)\<parallel>)"
+    by (nominal_induct B rule: ty.strong_induct) (auto)
+  then show "AXIOMSc B \<subseteq> \<parallel><B>\<parallel>" using NEG_simp by blast
+qed
+
+lemma Ax_in_CANDs:
+  shows "(y):Ax x a \<in> \<parallel>(B)\<parallel>"
+  and   "<b>:Ax x a \<in> \<parallel><B>\<parallel>"
+proof -
+  have "(y):Ax x a \<in> AXIOMSn B" by (auto simp add: AXIOMSn_def)
+  also have "AXIOMSn B \<subseteq> \<parallel>(B)\<parallel>" by (rule AXIOMS_in_CANDs)
+  finally show "(y):Ax x a \<in> \<parallel>(B)\<parallel>" by simp
+next
+  have "<b>:Ax x a \<in> AXIOMSc B" by (auto simp add: AXIOMSc_def)
+  also have "AXIOMSc B \<subseteq> \<parallel><B>\<parallel>" by (rule AXIOMS_in_CANDs)
+  finally show "<b>:Ax x a \<in> \<parallel><B>\<parallel>" by simp
+qed
+
+lemma AXIOMS_eqvt_aux_name:
+  fixes pi::"name prm"
+  shows "M \<in> AXIOMSn B \<Longrightarrow> (pi\<bullet>M) \<in> AXIOMSn B" 
+  and   "N \<in> AXIOMSc B \<Longrightarrow> (pi\<bullet>N) \<in> AXIOMSc B"
+apply(auto simp add: AXIOMSn_def AXIOMSc_def)
+apply(rule_tac x="pi\<bullet>x" in exI)
+apply(rule_tac x="pi\<bullet>y" in exI)
+apply(rule_tac x="pi\<bullet>b" in exI)
+apply(simp)
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>y" in exI)
+apply(rule_tac x="pi\<bullet>b" in exI)
+apply(simp)
+done
+
+lemma AXIOMS_eqvt_aux_coname:
+  fixes pi::"coname prm"
+  shows "M \<in> AXIOMSn B \<Longrightarrow> (pi\<bullet>M) \<in> AXIOMSn B" 
+  and   "N \<in> AXIOMSc B \<Longrightarrow> (pi\<bullet>N) \<in> AXIOMSc B"
+apply(auto simp add: AXIOMSn_def AXIOMSc_def)
+apply(rule_tac x="pi\<bullet>x" in exI)
+apply(rule_tac x="pi\<bullet>y" in exI)
+apply(rule_tac x="pi\<bullet>b" in exI)
+apply(simp)
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>y" in exI)
+apply(rule_tac x="pi\<bullet>b" in exI)
+apply(simp)
+done
+
+lemma AXIOMS_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>AXIOMSn B) = AXIOMSn B" 
+  and   "(pi\<bullet>AXIOMSc B) = AXIOMSc B"
+apply(auto)
+apply(simp add: pt_set_bij1a[OF pt_name_inst, OF at_name_inst])
+apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_name(1))
+apply(perm_simp)
+apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_name(1))
+apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp add: pt_set_bij1a[OF pt_name_inst, OF at_name_inst])
+apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_name(2))
+apply(perm_simp)
+apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_name(2))
+apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst])
+done
+
+lemma AXIOMS_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>AXIOMSn B) = AXIOMSn B" 
+  and   "(pi\<bullet>AXIOMSc B) = AXIOMSc B"
+apply(auto)
+apply(simp add: pt_set_bij1a[OF pt_coname_inst, OF at_coname_inst])
+apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_coname(1))
+apply(perm_simp)
+apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_coname(1))
+apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: pt_set_bij1a[OF pt_coname_inst, OF at_coname_inst])
+apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_coname(2))
+apply(perm_simp)
+apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_coname(2))
+apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst])
+done
+
+lemma BINDING_eqvt_name:
+  fixes pi::"name prm"
+  shows "(pi\<bullet>(BINDINGn B X)) = BINDINGn B (pi\<bullet>X)" 
+  and   "(pi\<bullet>(BINDINGc B Y)) = BINDINGc B (pi\<bullet>Y)" 
+apply(auto simp add: BINDINGn_def BINDINGc_def perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(auto)[1]
+apply(drule_tac x="(rev pi)\<bullet>a" in spec)
+apply(drule_tac x="(rev pi)\<bullet>P" in spec)
+apply(drule mp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp)
+apply(drule_tac ?pi1.0="pi" in SNa_eqvt(1))
+apply(perm_simp add: nsubst_eqvt)
+apply(rule_tac x="(rev pi\<bullet>xa):(rev pi\<bullet>M)" in exI)
+apply(perm_simp)
+apply(rule_tac x="rev pi\<bullet>xa" in exI)
+apply(rule_tac x="rev pi\<bullet>M" in exI)
+apply(simp)
+apply(auto)[1]
+apply(drule_tac x="pi\<bullet>a" in spec)
+apply(drule_tac x="pi\<bullet>P" in spec)
+apply(drule mp)
+apply(force)
+apply(drule_tac ?pi1.0="rev pi" in SNa_eqvt(1))
+apply(perm_simp add: nsubst_eqvt)
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(auto)[1]
+apply(drule_tac x="(rev pi)\<bullet>x" in spec)
+apply(drule_tac x="(rev pi)\<bullet>P" in spec)
+apply(drule mp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+apply(simp)
+apply(drule_tac ?pi1.0="pi" in SNa_eqvt(1))
+apply(perm_simp add: csubst_eqvt)
+apply(rule_tac x="<(rev pi\<bullet>a)>:(rev pi\<bullet>M)" in exI)
+apply(perm_simp)
+apply(rule_tac x="rev pi\<bullet>a" in exI)
+apply(rule_tac x="rev pi\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(auto)[1]
+apply(drule_tac x="pi\<bullet>x" in spec)
+apply(drule_tac x="pi\<bullet>P" in spec)
+apply(drule mp)
+apply(force)
+apply(drule_tac ?pi1.0="rev pi" in SNa_eqvt(1))
+apply(perm_simp add: csubst_eqvt)
+done
+
+lemma BINDING_eqvt_coname:
+  fixes pi::"coname prm"
+  shows "(pi\<bullet>(BINDINGn B X)) = BINDINGn B (pi\<bullet>X)" 
+  and   "(pi\<bullet>(BINDINGc B Y)) = BINDINGc B (pi\<bullet>Y)" 
+apply(auto simp add: BINDINGn_def BINDINGc_def perm_set_eq)
+apply(rule_tac x="pi\<bullet>xb" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(auto)[1]
+apply(drule_tac x="(rev pi)\<bullet>a" in spec)
+apply(drule_tac x="(rev pi)\<bullet>P" in spec)
+apply(drule mp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp)
+apply(drule_tac ?pi2.0="pi" in SNa_eqvt(2))
+apply(perm_simp add: nsubst_eqvt)
+apply(rule_tac x="(rev pi\<bullet>xa):(rev pi\<bullet>M)" in exI)
+apply(perm_simp)
+apply(rule_tac x="rev pi\<bullet>xa" in exI)
+apply(rule_tac x="rev pi\<bullet>M" in exI)
+apply(simp add: swap_simps)
+apply(auto)[1]
+apply(drule_tac x="pi\<bullet>a" in spec)
+apply(drule_tac x="pi\<bullet>P" in spec)
+apply(drule mp)
+apply(force)
+apply(drule_tac ?pi2.0="rev pi" in SNa_eqvt(2))
+apply(perm_simp add: nsubst_eqvt)
+apply(rule_tac x="pi\<bullet>a" in exI)
+apply(rule_tac x="pi\<bullet>M" in exI)
+apply(simp)
+apply(auto)[1]
+apply(drule_tac x="(rev pi)\<bullet>x" in spec)
+apply(drule_tac x="(rev pi)\<bullet>P" in spec)
+apply(drule mp)
+apply(drule sym)
+apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+apply(simp)
+apply(drule_tac ?pi2.0="pi" in SNa_eqvt(2))
+apply(perm_simp add: csubst_eqvt)
+apply(rule_tac x="<(rev pi\<bullet>a)>:(rev pi\<bullet>M)" in exI)
+apply(perm_simp)
+apply(rule_tac x="rev pi\<bullet>a" in exI)
+apply(rule_tac x="rev pi\<bullet>M" in exI)
+apply(simp)
+apply(auto)[1]
+apply(drule_tac x="pi\<bullet>x" in spec)
+apply(drule_tac x="pi\<bullet>P" in spec)
+apply(drule mp)
+apply(force)
+apply(drule_tac ?pi2.0="rev pi" in SNa_eqvt(2))
+apply(perm_simp add: csubst_eqvt)
+done
+
+lemma CAND_eqvt_name:
+  fixes pi::"name prm"
+  shows   "(pi\<bullet>(\<parallel>(B)\<parallel>)) = (\<parallel>(B)\<parallel>)"
+  and     "(pi\<bullet>(\<parallel><B>\<parallel>)) = (\<parallel><B>\<parallel>)"
+proof (nominal_induct B rule: ty.strong_induct)
+  case (PR X)
+  { case 1 show ?case 
+      apply -
+      apply(simp add: lfp_eqvt)
+      apply(simp add: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+      apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name)
+      apply(perm_simp)
+    done
+  next
+    case 2 show ?case
+      apply -
+      apply(simp only: NEGc_simps)
+      apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name)
+      apply(simp add: lfp_eqvt)
+      apply(simp add: comp_def)
+      apply(simp add: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+      apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name)
+      apply(perm_simp)
+      done
+  }
+next
+  case (NOT B)
+  have ih1: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
+  have ih2: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
+  have g: "pi\<bullet>(\<parallel>(NOT B)\<parallel>) = (\<parallel>(NOT B)\<parallel>)"
+    apply -
+    apply(simp only: lfp_eqvt)
+    apply(simp only: comp_def)
+    apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+    apply(simp only: NEGc.simps NEGn.simps)
+    apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name NOTRIGHT_eqvt_name NOTLEFT_eqvt_name)
+    apply(perm_simp add: ih1 ih2)
+    done
+  { case 1 show ?case by (rule g)
+  next 
+    case 2 show ?case
+      by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name NOTRIGHT_eqvt_name ih1 ih2 g)
+  }
+next
+  case (AND A B)
+  have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
+  have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
+  have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
+  have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
+  have g: "pi\<bullet>(\<parallel>(A AND B)\<parallel>) = (\<parallel>(A AND B)\<parallel>)"
+    apply -
+    apply(simp only: lfp_eqvt)
+    apply(simp only: comp_def)
+    apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+    apply(simp only: NEGc.simps NEGn.simps)
+    apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ANDRIGHT_eqvt_name 
+                     ANDLEFT2_eqvt_name ANDLEFT1_eqvt_name)
+    apply(perm_simp add: ih1 ih2 ih3 ih4)
+    done
+  { case 1 show ?case by (rule g)
+  next 
+    case 2 show ?case
+      by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name 
+                     ANDRIGHT_eqvt_name ANDLEFT1_eqvt_name ANDLEFT2_eqvt_name ih1 ih2 ih3 ih4 g)
+  }
+next
+  case (OR A B)
+  have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
+  have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
+  have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
+  have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
+  have g: "pi\<bullet>(\<parallel>(A OR B)\<parallel>) = (\<parallel>(A OR B)\<parallel>)"
+    apply -
+    apply(simp only: lfp_eqvt)
+    apply(simp only: comp_def)
+    apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+    apply(simp only: NEGc.simps NEGn.simps)
+    apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ORRIGHT1_eqvt_name 
+                     ORRIGHT2_eqvt_name ORLEFT_eqvt_name)
+    apply(perm_simp add: ih1 ih2 ih3 ih4)
+    done
+  { case 1 show ?case by (rule g)
+  next 
+    case 2 show ?case
+      by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name 
+                     ORRIGHT1_eqvt_name ORRIGHT2_eqvt_name ORLEFT_eqvt_name ih1 ih2 ih3 ih4 g)
+  }
+next
+  case (IMP A B)
+  have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
+  have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
+  have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
+  have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
+  have g: "pi\<bullet>(\<parallel>(A IMP B)\<parallel>) = (\<parallel>(A IMP B)\<parallel>)"
+    apply -
+    apply(simp only: lfp_eqvt)
+    apply(simp only: comp_def)
+    apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+    apply(simp only: NEGc.simps NEGn.simps)
+    apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name IMPRIGHT_eqvt_name IMPLEFT_eqvt_name)
+    apply(perm_simp add: ih1 ih2 ih3 ih4)
+    done
+  { case 1 show ?case by (rule g)
+  next 
+    case 2 show ?case
+      by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name 
+                     IMPRIGHT_eqvt_name IMPLEFT_eqvt_name ih1 ih2 ih3 ih4 g)
+  }
+qed
+
+lemma CAND_eqvt_coname:
+  fixes pi::"coname prm"
+  shows   "(pi\<bullet>(\<parallel>(B)\<parallel>)) = (\<parallel>(B)\<parallel>)"
+  and     "(pi\<bullet>(\<parallel><B>\<parallel>)) = (\<parallel><B>\<parallel>)"
+proof (nominal_induct B rule: ty.strong_induct)
+  case (PR X)
+  { case 1 show ?case 
+      apply -
+      apply(simp add: lfp_eqvt)
+      apply(simp add: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+      apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname)
+      apply(perm_simp)
+    done
+  next
+    case 2 show ?case
+      apply -
+      apply(simp only: NEGc_simps)
+      apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname)
+      apply(simp add: lfp_eqvt)
+      apply(simp add: comp_def)
+      apply(simp add: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+      apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname)
+      apply(perm_simp)
+      done
+  }
+next
+  case (NOT B)
+  have ih1: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
+  have ih2: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
+  have g: "pi\<bullet>(\<parallel>(NOT B)\<parallel>) = (\<parallel>(NOT B)\<parallel>)"
+    apply -
+    apply(simp only: lfp_eqvt)
+    apply(simp only: comp_def)
+    apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+    apply(simp only: NEGc.simps NEGn.simps)
+    apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname 
+            NOTRIGHT_eqvt_coname NOTLEFT_eqvt_coname)
+    apply(perm_simp add: ih1 ih2)
+    done
+  { case 1 show ?case by (rule g)
+  next 
+    case 2 show ?case
+      by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname 
+              NOTRIGHT_eqvt_coname ih1 ih2 g)
+  }
+next
+  case (AND A B)
+  have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
+  have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
+  have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
+  have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
+  have g: "pi\<bullet>(\<parallel>(A AND B)\<parallel>) = (\<parallel>(A AND B)\<parallel>)"
+    apply -
+    apply(simp only: lfp_eqvt)
+    apply(simp only: comp_def)
+    apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+    apply(simp only: NEGc.simps NEGn.simps)
+    apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ANDRIGHT_eqvt_coname 
+                     ANDLEFT2_eqvt_coname ANDLEFT1_eqvt_coname)
+    apply(perm_simp add: ih1 ih2 ih3 ih4)
+    done
+  { case 1 show ?case by (rule g)
+  next 
+    case 2 show ?case
+      by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname 
+                     ANDRIGHT_eqvt_coname ANDLEFT1_eqvt_coname ANDLEFT2_eqvt_coname ih1 ih2 ih3 ih4 g)
+  }
+next
+  case (OR A B)
+  have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
+  have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
+  have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
+  have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
+  have g: "pi\<bullet>(\<parallel>(A OR B)\<parallel>) = (\<parallel>(A OR B)\<parallel>)"
+    apply -
+    apply(simp only: lfp_eqvt)
+    apply(simp only: comp_def)
+    apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+    apply(simp only: NEGc.simps NEGn.simps)
+    apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ORRIGHT1_eqvt_coname 
+                     ORRIGHT2_eqvt_coname ORLEFT_eqvt_coname)
+    apply(perm_simp add: ih1 ih2 ih3 ih4)
+    done
+  { case 1 show ?case by (rule g)
+  next 
+    case 2 show ?case
+      by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname 
+                     ORRIGHT1_eqvt_coname ORRIGHT2_eqvt_coname ORLEFT_eqvt_coname ih1 ih2 ih3 ih4 g)
+  }
+next
+  case (IMP A B)
+  have ih1: "pi\<bullet>(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
+  have ih2: "pi\<bullet>(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
+  have ih3: "pi\<bullet>(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
+  have ih4: "pi\<bullet>(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
+  have g: "pi\<bullet>(\<parallel>(A IMP B)\<parallel>) = (\<parallel>(A IMP B)\<parallel>)"
+    apply -
+    apply(simp only: lfp_eqvt)
+    apply(simp only: comp_def)
+    apply(simp only: perm_fun_def [where 'a="ntrm \<Rightarrow> bool"])
+    apply(simp only: NEGc.simps NEGn.simps)
+    apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname IMPRIGHT_eqvt_coname 
+         IMPLEFT_eqvt_coname)
+    apply(perm_simp add: ih1 ih2 ih3 ih4)
+    done
+  { case 1 show ?case by (rule g)
+  next 
+    case 2 show ?case
+      by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname 
+                     IMPRIGHT_eqvt_coname IMPLEFT_eqvt_coname ih1 ih2 ih3 ih4 g)
+  }
+qed
+
+text {* Elimination rules for the set-operators *}
+
+lemma BINDINGc_elim:
+  assumes a: "<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>)"
+  shows "\<forall>x P. ((x):P)\<in>(\<parallel>(B)\<parallel>) \<longrightarrow> SNa (M{a:=(x).P})"
+using a
+apply(auto simp add: BINDINGc_def)
+apply(auto simp add: ctrm.inject alpha)
+apply(drule_tac x="[(a,aa)]\<bullet>x" in spec)
+apply(drule_tac x="[(a,aa)]\<bullet>P" in spec)
+apply(drule mp)
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname)
+apply(drule_tac ?pi2.0="[(a,aa)]" in SNa_eqvt(2))
+apply(perm_simp add: csubst_eqvt)
+done
+
+lemma BINDINGn_elim:
+  assumes a: "(x):M \<in> BINDINGn B (\<parallel><B>\<parallel>)"
+  shows "\<forall>c P. (<c>:P)\<in>(\<parallel><B>\<parallel>) \<longrightarrow> SNa (M{x:=<c>.P})"
+using a
+apply(auto simp add: BINDINGn_def)
+apply(auto simp add: ntrm.inject alpha)
+apply(drule_tac x="[(x,xa)]\<bullet>c" in spec)
+apply(drule_tac x="[(x,xa)]\<bullet>P" in spec)
+apply(drule mp)
+apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name)
+apply(drule_tac ?pi1.0="[(x,xa)]" in SNa_eqvt(1))
+apply(perm_simp add: nsubst_eqvt)
+done
+
+lemma NOTRIGHT_elim:
+  assumes a: "<a>:M \<in> NOTRIGHT (NOT B) (\<parallel>(B)\<parallel>)"
+  obtains x' M' where "M = NotR (x').M' a" and "fic (NotR (x').M' a) a" and "(x'):M' \<in> (\<parallel>(B)\<parallel>)"
+using a
+apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+done
+
+lemma NOTLEFT_elim:
+  assumes a: "(x):M \<in> NOTLEFT (NOT B) (\<parallel><B>\<parallel>)"
+  obtains a' M' where "M = NotL <a'>.M' x" and "fin (NotL <a'>.M' x) x" and "<a'>:M' \<in> (\<parallel><B>\<parallel>)"
+using a
+apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+done
+
+lemma ANDRIGHT_elim:
+  assumes a: "<a>:M \<in> ANDRIGHT (B AND C) (\<parallel><B>\<parallel>) (\<parallel><C>\<parallel>)"
+  obtains d' M' e' N' where "M = AndR <d'>.M' <e'>.N' a" and "fic (AndR <d'>.M' <e'>.N' a) a" 
+                      and "<d'>:M' \<in> (\<parallel><B>\<parallel>)" and "<e'>:N' \<in> (\<parallel><C>\<parallel>)"
+using a
+apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm fresh_atm)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(a,c)]\<bullet>M" in meta_spec)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(a,c)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" and x="<a>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(case_tac "a=b")
+apply(simp)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(b,c)]\<bullet>M" in meta_spec)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(b,c)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(case_tac "c=b")
+apply(simp)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(a,c)]\<bullet>M" in meta_spec)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(a,c)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(case_tac "a=aa")
+apply(simp)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(aa,c)]\<bullet>M" in meta_spec)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(aa,c)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,c)]" and x="<aa>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(case_tac "c=aa")
+apply(simp)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(a,aa)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" and x="<a>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(a,c)]\<bullet>M" in meta_spec)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(a,c)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" and x="<a>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(case_tac "a=aa")
+apply(simp)
+apply(case_tac "aa=b")
+apply(simp)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(b,c)]\<bullet>M" in meta_spec)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(b,c)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(case_tac "c=b")
+apply(simp)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(aa,b)]\<bullet>M" in meta_spec)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(aa,b)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(aa,c)]\<bullet>M" in meta_spec)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(aa,c)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(case_tac "c=aa")
+apply(simp)
+apply(case_tac "a=b")
+apply(simp)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(b,aa)]\<bullet>M" in meta_spec)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(b,aa)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,aa)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,aa)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(case_tac "aa=b")
+apply(simp)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(a,aa)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(case_tac "a=b")
+apply(simp)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(b,c)]\<bullet>M" in meta_spec)
+apply(drule_tac x="c" in meta_spec)
+apply(drule_tac x="[(b,c)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(b,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(case_tac "c=b")
+apply(simp)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(a,c)]\<bullet>M" in meta_spec)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(a,c)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+done 
+
+lemma ANDLEFT1_elim:
+  assumes a: "(x):M \<in> ANDLEFT1 (B AND C) (\<parallel>(B)\<parallel>)"
+  obtains x' M' where "M = AndL1 (x').M' x" and "fin (AndL1 (x').M' x) x" and "(x'):M' \<in> (\<parallel>(B)\<parallel>)"
+using a
+apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(case_tac "x=xa")
+apply(simp)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(xa,y)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "y=xa")
+apply(simp)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+done
+
+lemma ANDLEFT2_elim:
+  assumes a: "(x):M \<in> ANDLEFT2 (B AND C) (\<parallel>(C)\<parallel>)"
+  obtains x' M' where "M = AndL2 (x').M' x" and "fin (AndL2 (x').M' x) x" and "(x'):M' \<in> (\<parallel>(C)\<parallel>)"
+using a
+apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(case_tac "x=xa")
+apply(simp)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(xa,y)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "y=xa")
+apply(simp)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+done
+
+lemma ORRIGHT1_elim:
+  assumes a: "<a>:M \<in> ORRIGHT1 (B OR C) (\<parallel><B>\<parallel>)"
+  obtains a' M' where "M = OrR1 <a'>.M' a" and "fic (OrR1 <a'>.M' a) a" and "<a'>:M' \<in> (\<parallel><B>\<parallel>)"
+using a
+apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(case_tac "a=aa")
+apply(simp)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(aa,b)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(case_tac "b=aa")
+apply(simp)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+done
+
+lemma ORRIGHT2_elim:
+  assumes a: "<a>:M \<in> ORRIGHT2 (B OR C) (\<parallel><C>\<parallel>)"
+  obtains a' M' where "M = OrR2 <a'>.M' a" and "fic (OrR2 <a'>.M' a) a" and "<a'>:M' \<in> (\<parallel><C>\<parallel>)"
+using a
+apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(case_tac "a=aa")
+apply(simp)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(aa,b)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(case_tac "b=aa")
+apply(simp)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+apply(simp)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(simp)
+done
+
+lemma ORLEFT_elim:
+  assumes a: "(x):M \<in> ORLEFT (B OR C) (\<parallel>(B)\<parallel>) (\<parallel>(C)\<parallel>)"
+  obtains y' M' z' N' where "M = OrL (y').M' (z').N' x" and "fin (OrL (y').M' (z').N' x) x" 
+                      and "(y'):M' \<in> (\<parallel>(B)\<parallel>)" and "(z'):N' \<in> (\<parallel>(C)\<parallel>)"
+using a
+apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm fresh_atm)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(x,z)]\<bullet>M" in meta_spec)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(x,z)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(case_tac "x=y")
+apply(simp)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(y,z)]\<bullet>M" in meta_spec)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(y,z)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "z=y")
+apply(simp)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(x,z)]\<bullet>M" in meta_spec)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(x,z)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(case_tac "x=xa")
+apply(simp)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(xa,z)]\<bullet>M" in meta_spec)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(xa,z)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,z)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "z=xa")
+apply(simp)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(x,xa)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(x,z)]\<bullet>M" in meta_spec)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(x,z)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(case_tac "x=xa")
+apply(simp)
+apply(case_tac "xa=y")
+apply(simp)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(y,z)]\<bullet>M" in meta_spec)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(y,z)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "z=y")
+apply(simp)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(xa,y)]\<bullet>M" in meta_spec)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(xa,y)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(xa,z)]\<bullet>M" in meta_spec)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(xa,z)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "z=xa")
+apply(simp)
+apply(case_tac "x=y")
+apply(simp)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(y,xa)]\<bullet>M" in meta_spec)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(y,xa)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,xa)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,xa)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "xa=y")
+apply(simp)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(x,xa)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "x=y")
+apply(simp)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(y,z)]\<bullet>M" in meta_spec)
+apply(drule_tac x="z" in meta_spec)
+apply(drule_tac x="[(y,z)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(y,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "z=y")
+apply(simp)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(x,z)]\<bullet>M" in meta_spec)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(x,z)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+done
+
+lemma IMPRIGHT_elim:
+  assumes a: "<a>:M \<in> IMPRIGHT (B IMP C) (\<parallel>(B)\<parallel>) (\<parallel><C>\<parallel>) (\<parallel>(C)\<parallel>) (\<parallel><B>\<parallel>)"
+  obtains x' a' M' where "M = ImpR (x').<a'>.M' a" and "fic (ImpR (x').<a'>.M' a) a" 
+                   and "\<forall>z P. x'\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(C)\<parallel> \<longrightarrow> (x'):(M'{a':=(z).P}) \<in> \<parallel>(B)\<parallel>" 
+                   and "\<forall>c Q. a'\<sharp>(c,Q) \<and> <c>:Q \<in> \<parallel><B>\<parallel> \<longrightarrow> <a'>:(M'{x':=<c>.Q}) \<in> \<parallel><C>\<parallel>"
+using a
+apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(auto)[1]
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule_tac x="z" in spec)
+apply(drule_tac x="[(a,b)]\<bullet>P" in spec)
+apply(simp add: fresh_prod fresh_left calc_atm)
+apply(drule_tac pi="[(a,b)]" and x="(x):M{a:=(z).([(a,b)]\<bullet>P)}" 
+                                     in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: calc_atm csubst_eqvt CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(auto)[1]
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add:  CAND_eqvt_coname)
+apply(rotate_tac 2)
+apply(drule_tac x="[(a,b)]\<bullet>c" in spec)
+apply(drule_tac x="[(a,b)]\<bullet>Q" in spec)
+apply(simp add: fresh_prod fresh_left)
+apply(drule mp)
+apply(simp add: calc_atm)
+apply(drule_tac pi="[(a,b)]" and x="<a>:M{x:=<([(a,b)]\<bullet>c)>.([(a,b)]\<bullet>Q)}" 
+                                        in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname)
+apply(simp add: calc_atm)
+apply(case_tac "a=aa")
+apply(simp)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="b" in meta_spec)
+apply(drule_tac x="[(aa,b)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(auto)[1]
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule_tac x="z" in spec)
+apply(drule_tac x="[(a,b)]\<bullet>P" in spec)
+apply(simp add: fresh_prod fresh_left calc_atm)
+apply(drule_tac pi="[(a,b)]" and x="(x):M{a:=(z).([(a,b)]\<bullet>P)}" 
+                                     in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: calc_atm csubst_eqvt  CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(auto)[1]
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname)
+apply(drule_tac x="[(a,b)]\<bullet>c" in spec)
+apply(drule_tac x="[(a,b)]\<bullet>Q" in spec)
+apply(simp)
+apply(simp add: fresh_prod fresh_left)
+apply(drule mp)
+apply(simp add: calc_atm)
+apply(drule_tac pi="[(a,b)]" and x="<a>:M{x:=<([(a,b)]\<bullet>c)>.([(a,b)]\<bullet>Q)}" 
+                                      in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname)
+apply(simp add: calc_atm)
+apply(simp)
+apply(case_tac "b=aa")
+apply(simp)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(a,aa)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(auto)[1]
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm CAND_eqvt_coname)
+apply(drule_tac x="z" in spec)
+apply(drule_tac x="[(a,aa)]\<bullet>P" in spec)
+apply(simp add: fresh_prod fresh_left calc_atm)
+apply(drule_tac pi="[(a,aa)]" and x="(x):M{aa:=(z).([(a,aa)]\<bullet>P)}" 
+                                    in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: calc_atm csubst_eqvt  CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(auto)[1]
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add:  CAND_eqvt_coname)
+apply(drule_tac x="[(a,aa)]\<bullet>c" in spec)
+apply(drule_tac x="[(a,aa)]\<bullet>Q" in spec)
+apply(simp)
+apply(simp add: fresh_prod fresh_left)
+apply(drule mp)
+apply(simp add: calc_atm)
+apply(drule_tac pi="[(a,aa)]" and x="<aa>:M{x:=<([(a,aa)]\<bullet>c)>.([(a,aa)]\<bullet>Q)}" 
+                                    in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: nsubst_eqvt  CAND_eqvt_coname)
+apply(simp add: calc_atm)
+apply(simp)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="aa" in meta_spec)
+apply(drule_tac x="[(a,b)]\<bullet>M" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(auto)[1]
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: calc_atm  CAND_eqvt_coname)
+apply(drule_tac x="z" in spec)
+apply(drule_tac x="[(a,b)]\<bullet>P" in spec)
+apply(simp add: fresh_prod fresh_left calc_atm)
+apply(drule_tac pi="[(a,b)]" and x="(x):M{aa:=(z).([(a,b)]\<bullet>P)}" 
+                                          in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: calc_atm csubst_eqvt  CAND_eqvt_coname)
+apply(drule meta_mp)
+apply(auto)[1]
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add:  CAND_eqvt_coname)
+apply(drule_tac x="[(a,b)]\<bullet>c" in spec)
+apply(drule_tac x="[(a,b)]\<bullet>Q" in spec)
+apply(simp add: fresh_prod fresh_left)
+apply(drule mp)
+apply(simp add: calc_atm)
+apply(drule_tac pi="[(a,b)]" and x="<aa>:M{x:=<([(a,b)]\<bullet>c)>.([(a,b)]\<bullet>Q)}" 
+                                        in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: nsubst_eqvt  CAND_eqvt_coname)
+apply(simp add: calc_atm)
+done
+
+lemma IMPLEFT_elim:
+  assumes a: "(x):M \<in> IMPLEFT (B IMP C) (\<parallel><B>\<parallel>) (\<parallel>(C)\<parallel>)"
+  obtains x' a' M' N' where "M = ImpL <a'>.M' (x').N' x" and "fin (ImpL <a'>.M' (x').N' x) x" 
+                   and "<a'>:M' \<in> \<parallel><B>\<parallel>" and "(x'):N' \<in> \<parallel>(C)\<parallel>"
+using a
+apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: calc_atm  CAND_eqvt_name)
+apply(simp)
+apply(case_tac "x=xa")
+apply(simp)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(xa,y)]\<bullet>M" in meta_spec)
+apply(drule_tac x="y" in meta_spec)
+apply(drule_tac x="[(xa,y)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(xa,y)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(case_tac "y=xa")
+apply(simp)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(x,xa)]\<bullet>M" in meta_spec)
+apply(drule_tac x="x" in meta_spec)
+apply(drule_tac x="[(x,xa)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" and x="<a>:M" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm  CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,xa)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+apply(simp)
+apply(drule_tac x="a" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>M" in meta_spec)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule_tac x="[(x,y)]\<bullet>N" in meta_spec)
+apply(simp)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(drule meta_mp)
+apply(drule_tac pi="[(x,y)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: calc_atm CAND_eqvt_name)
+apply(simp)
+done
+
+lemma CANDs_alpha:
+  shows "<a>:M \<in> (\<parallel><B>\<parallel>) \<Longrightarrow> [a].M = [b].N \<Longrightarrow> <b>:N \<in> (\<parallel><B>\<parallel>)"
+  and   "(x):M \<in> (\<parallel>(B)\<parallel>) \<Longrightarrow> [x].M = [y].N \<Longrightarrow> (y):N \<in> (\<parallel>(B)\<parallel>)"
+apply(auto simp add: alpha)
+apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(perm_simp add: CAND_eqvt_coname calc_atm)
+apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name calc_atm)
+done
+
+lemma CAND_NotR_elim:
+  assumes a: "<a>:NotR (x).M a \<in> (\<parallel><B>\<parallel>)" "<a>:NotR (x).M a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)"
+  shows "\<exists>B'. B = NOT B' \<and> (x):M \<in> (\<parallel>(B')\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
+done
+
+lemma CAND_NotL_elim_aux:
+  assumes a: "(x):NotL <a>.M x \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):NotL <a>.M x \<notin> BINDINGn B (\<parallel><B>\<parallel>)"
+  shows "\<exists>B'. B = NOT B' \<and> <a>:M \<in> (\<parallel><B'>\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
+apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
+done
+
+lemmas CAND_NotL_elim = CAND_NotL_elim_aux[OF NEG_elim(2)]
+
+lemma CAND_AndR_elim:
+  assumes a: "<a>:AndR <b>.M <c>.N a \<in> (\<parallel><B>\<parallel>)" "<a>:AndR <b>.M <c>.N a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)"
+  shows "\<exists>B1 B2. B = B1 AND B2 \<and> <b>:M \<in> (\<parallel><B1>\<parallel>) \<and> <c>:N \<in> (\<parallel><B2>\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
+apply(drule_tac pi="[(a,ca)]" and x="<a>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(drule_tac pi="[(a,ca)]" and x="<a>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(drule_tac pi="[(a,ca)]" and x="<a>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(case_tac "a=ba")
+apply(simp)
+apply(drule_tac pi="[(ba,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(case_tac "ca=ba")
+apply(simp)
+apply(drule_tac pi="[(a,ba)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(drule_tac pi="[(a,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(case_tac "a=aa")
+apply(simp)
+apply(drule_tac pi="[(aa,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(case_tac "ca=aa")
+apply(simp)
+apply(drule_tac pi="[(a,aa)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(drule_tac pi="[(a,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(drule_tac pi="[(a,ca)]" and x="<a>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(case_tac "a=aa")
+apply(simp)
+apply(drule_tac pi="[(aa,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(case_tac "ca=aa")
+apply(simp)
+apply(drule_tac pi="[(a,aa)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(drule_tac pi="[(a,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(case_tac "a=ba")
+apply(simp)
+apply(drule_tac pi="[(ba,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(case_tac "ca=ba")
+apply(simp)
+apply(drule_tac pi="[(a,ba)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(drule_tac pi="[(a,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_coname calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+done
+
+lemma CAND_OrR1_elim:
+  assumes a: "<a>:OrR1 <b>.M a \<in> (\<parallel><B>\<parallel>)" "<a>:OrR1 <b>.M a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)"
+  shows "\<exists>B1 B2. B = B1 OR B2 \<and> <b>:M \<in> (\<parallel><B1>\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
+apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
+apply(case_tac "a=aa")
+apply(simp)
+apply(drule_tac pi="[(aa,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
+apply(case_tac "ba=aa")
+apply(simp)
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
+apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
+done
+
+lemma CAND_OrR2_elim:
+  assumes a: "<a>:OrR2 <b>.M a \<in> (\<parallel><B>\<parallel>)" "<a>:OrR2 <b>.M a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)"
+  shows "\<exists>B1 B2. B = B1 OR B2 \<and> <b>:M \<in> (\<parallel><B2>\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
+apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
+apply(case_tac "a=aa")
+apply(simp)
+apply(drule_tac pi="[(aa,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
+apply(case_tac "ba=aa")
+apply(simp)
+apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
+apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
+done
+
+lemma CAND_OrL_elim_aux:
+  assumes a: "(x):(OrL (y).M (z).N x) \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):(OrL (y).M (z).N x) \<notin> BINDINGn B (\<parallel><B>\<parallel>)"
+  shows "\<exists>B1 B2. B = B1 OR B2 \<and> (y):M \<in> (\<parallel>(B1)\<parallel>) \<and> (z):N \<in> (\<parallel>(B2)\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
+apply(drule_tac pi="[(x,za)]" and x="(x):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(drule_tac pi="[(x,za)]" and x="(x):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(drule_tac pi="[(x,za)]" and x="(x):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(case_tac "x=ya")
+apply(simp)
+apply(drule_tac pi="[(ya,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(case_tac "za=ya")
+apply(simp)
+apply(drule_tac pi="[(x,ya)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(drule_tac pi="[(x,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(case_tac "x=xa")
+apply(simp)
+apply(drule_tac pi="[(xa,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(case_tac "za=xa")
+apply(simp)
+apply(drule_tac pi="[(x,xa)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(drule_tac pi="[(x,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(drule_tac pi="[(x,za)]" and x="(x):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(case_tac "x=xa")
+apply(simp)
+apply(drule_tac pi="[(xa,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(case_tac "za=xa")
+apply(simp)
+apply(drule_tac pi="[(x,xa)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(drule_tac pi="[(x,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(case_tac "x=ya")
+apply(simp)
+apply(drule_tac pi="[(ya,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(case_tac "za=ya")
+apply(simp)
+apply(drule_tac pi="[(x,ya)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(drule_tac pi="[(x,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+done
+
+lemmas CAND_OrL_elim = CAND_OrL_elim_aux[OF NEG_elim(2)]
+
+lemma CAND_AndL1_elim_aux:
+  assumes a: "(x):(AndL1 (y).M x) \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):(AndL1 (y).M x) \<notin> BINDINGn B (\<parallel><B>\<parallel>)"
+  shows "\<exists>B1 B2. B = B1 AND B2 \<and> (y):M \<in> (\<parallel>(B1)\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
+apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
+apply(case_tac "x=xa")
+apply(simp)
+apply(drule_tac pi="[(xa,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
+apply(case_tac "ya=xa")
+apply(simp)
+apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
+apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
+done
+
+lemmas CAND_AndL1_elim = CAND_AndL1_elim_aux[OF NEG_elim(2)]
+
+lemma CAND_AndL2_elim_aux:
+  assumes a: "(x):(AndL2 (y).M x) \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):(AndL2 (y).M x) \<notin> BINDINGn B (\<parallel><B>\<parallel>)"
+  shows "\<exists>B1 B2. B = B1 AND B2 \<and> (y):M \<in> (\<parallel>(B2)\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
+apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
+apply(case_tac "x=xa")
+apply(simp)
+apply(drule_tac pi="[(xa,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
+apply(case_tac "ya=xa")
+apply(simp)
+apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
+apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
+done
+
+lemmas CAND_AndL2_elim = CAND_AndL2_elim_aux[OF NEG_elim(2)]
+
+lemma CAND_ImpL_elim_aux:
+  assumes a: "(x):(ImpL <a>.M (z).N x) \<in> NEGn B (\<parallel><B>\<parallel>)" "(x):(ImpL <a>.M (z).N x) \<notin> BINDINGn B (\<parallel><B>\<parallel>)"
+  shows "\<exists>B1 B2. B = B1 IMP B2 \<and> <a>:M \<in> (\<parallel><B1>\<parallel>) \<and> (z):N \<in> (\<parallel>(B2)\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
+apply(drule_tac pi="[(x,y)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(drule_tac pi="[(x,y)]" and x="(x):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(drule_tac pi="[(x,y)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(case_tac "x=xa")
+apply(simp)
+apply(drule_tac pi="[(xa,y)]" and x="(xa):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(case_tac "y=xa")
+apply(simp)
+apply(drule_tac pi="[(x,xa)]" and x="(xa):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+apply(simp)
+apply(drule_tac pi="[(x,y)]" and x="(xa):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name calc_atm)
+apply(auto intro: CANDs_alpha)[1]
+done
+
+lemmas CAND_ImpL_elim = CAND_ImpL_elim_aux[OF NEG_elim(2)]
+
+lemma CAND_ImpR_elim:
+  assumes a: "<a>:ImpR (x).<b>.M a \<in> (\<parallel><B>\<parallel>)" "<a>:ImpR (x).<b>.M a \<notin> BINDINGc B (\<parallel>(B)\<parallel>)"
+  shows "\<exists>B1 B2. B = B1 IMP B2 \<and> 
+                 (\<forall>z P. x\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(B2)\<parallel> \<longrightarrow> (x):(M{b:=(z).P}) \<in> \<parallel>(B1)\<parallel>) \<and>
+                 (\<forall>c Q. b\<sharp>(c,Q) \<and> <c>:Q \<in> \<parallel><B1>\<parallel> \<longrightarrow> <b>:(M{x:=<c>.Q}) \<in> \<parallel><B2>\<parallel>)" 
+using a
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
+apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm fresh_prod fresh_bij)
+apply(generate_fresh "name") 
+apply(generate_fresh "coname")
+apply(drule_tac a="ca" and z="c" in alpha_name_coname)
+apply(simp) 
+apply(simp) 
+apply(simp) 
+apply(drule_tac x="[(xa,c)]\<bullet>[(aa,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec)
+apply(drule_tac x="[(xa,c)]\<bullet>[(aa,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(generate_fresh "name")
+apply(generate_fresh "coname")
+apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
+apply(simp)
+apply(simp)
+apply(simp)
+apply(drule_tac x="[(xa,ca)]\<bullet>[(aa,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec)
+apply(drule_tac x="[(xa,ca)]\<bullet>[(aa,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(generate_fresh "name")
+apply(generate_fresh "coname")
+apply(drule_tac a="ca" and z="c" in alpha_name_coname)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(auto)[1]
+apply(simp)
+apply(drule_tac x="[(a,ba)]\<bullet>[(xa,c)]\<bullet>[(ba,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec)
+apply(drule_tac x="[(a,ba)]\<bullet>[(xa,c)]\<bullet>[(ba,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(generate_fresh "name")
+apply(generate_fresh "coname")
+apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(auto)[1]
+apply(simp)
+apply(drule_tac x="[(a,ba)]\<bullet>[(xa,ca)]\<bullet>[(ba,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec)
+apply(drule_tac x="[(a,ba)]\<bullet>[(xa,ca)]\<bullet>[(ba,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(case_tac "a=aa")
+apply(simp)
+apply(generate_fresh "name")
+apply(generate_fresh "coname")
+apply(drule_tac a="ca" and z="c" in alpha_name_coname)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(auto)[1]
+apply(simp)
+apply(drule_tac x="[(aa,ba)]\<bullet>[(xa,c)]\<bullet>[(ba,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec)
+apply(drule_tac x="[(aa,ba)]\<bullet>[(xa,c)]\<bullet>[(ba,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(aa,ba)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(aa,ba)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(simp)
+apply(case_tac "ba=aa")
+apply(simp)
+apply(generate_fresh "name")
+apply(generate_fresh "coname")
+apply(drule_tac a="ca" and z="c" in alpha_name_coname)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(auto)[1]
+apply(simp)
+apply(drule_tac x="[(a,aa)]\<bullet>[(xa,c)]\<bullet>[(a,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec)
+apply(drule_tac x="[(a,aa)]\<bullet>[(xa,c)]\<bullet>[(a,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,aa)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,aa)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(a,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(simp)
+apply(generate_fresh "name")
+apply(generate_fresh "coname")
+apply(drule_tac a="ca" and z="c" in alpha_name_coname)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(auto)[1]
+apply(simp)
+apply(drule_tac x="[(a,ba)]\<bullet>[(xa,c)]\<bullet>[(aa,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>z" in spec)
+apply(drule_tac x="[(a,ba)]\<bullet>[(xa,c)]\<bullet>[(aa,ca)]\<bullet>[(b,ca)]\<bullet>[(x,c)]\<bullet>P" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(case_tac "a=aa")
+apply(simp)
+apply(generate_fresh "name")
+apply(generate_fresh "coname")
+apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(auto)[1]
+apply(simp)
+apply(drule_tac x="[(aa,ba)]\<bullet>[(xa,ca)]\<bullet>[(ba,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec)
+apply(drule_tac x="[(aa,ba)]\<bullet>[(xa,ca)]\<bullet>[(ba,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(aa,ba)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(aa,ba)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(simp)
+apply(case_tac "ba=aa")
+apply(simp)
+apply(generate_fresh "name")
+apply(generate_fresh "coname")
+apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(auto)[1]
+apply(simp)
+apply(drule_tac x="[(a,aa)]\<bullet>[(xa,ca)]\<bullet>[(a,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec)
+apply(drule_tac x="[(a,aa)]\<bullet>[(xa,ca)]\<bullet>[(a,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,aa)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,aa)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(a,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(simp)
+apply(generate_fresh "name")
+apply(generate_fresh "coname")
+apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+apply(auto)[1]
+apply(simp)
+apply(drule_tac x="[(a,ba)]\<bullet>[(xa,ca)]\<bullet>[(aa,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>c" in spec)
+apply(drule_tac x="[(a,ba)]\<bullet>[(xa,ca)]\<bullet>[(aa,cb)]\<bullet>[(b,cb)]\<bullet>[(x,ca)]\<bullet>Q" in spec)
+apply(drule mp)
+apply(rule conjI)
+apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
+apply(rule conjI)
+apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
+apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
+apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
+done
+
+text {* Main lemma 1 *}
+
+lemma AXIOMS_imply_SNa:
+  shows "<a>:M \<in> AXIOMSc B \<Longrightarrow> SNa M"
+  and   "(x):M \<in> AXIOMSn B \<Longrightarrow> SNa M"
+apply -
+apply(auto simp add: AXIOMSn_def AXIOMSc_def ntrm.inject ctrm.inject alpha)
+apply(rule Ax_in_SNa)+
+done
+
+lemma BINDING_imply_SNa:
+  shows "<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<Longrightarrow> SNa M"
+  and   "(x):M \<in> BINDINGn B (\<parallel><B>\<parallel>) \<Longrightarrow> SNa M"
+apply -
+apply(auto simp add: BINDINGn_def BINDINGc_def ntrm.inject ctrm.inject alpha)
+apply(drule_tac x="x" in spec)
+apply(drule_tac x="Ax x a" in spec)
+apply(drule mp)
+apply(rule Ax_in_CANDs)
+apply(drule a_star_preserves_SNa)
+apply(rule subst_with_ax2)
+apply(simp add: crename_id)
+apply(drule_tac x="x" in spec)
+apply(drule_tac x="Ax x aa" in spec)
+apply(drule mp)
+apply(rule Ax_in_CANDs)
+apply(drule a_star_preserves_SNa)
+apply(rule subst_with_ax2)
+apply(simp add: crename_id SNa_eqvt)
+apply(drule_tac x="a" in spec)
+apply(drule_tac x="Ax x a" in spec)
+apply(drule mp)
+apply(rule Ax_in_CANDs)
+apply(drule a_star_preserves_SNa)
+apply(rule subst_with_ax1)
+apply(simp add: nrename_id)
+apply(drule_tac x="a" in spec)
+apply(drule_tac x="Ax xa a" in spec)
+apply(drule mp)
+apply(rule Ax_in_CANDs)
+apply(drule a_star_preserves_SNa)
+apply(rule subst_with_ax1)
+apply(simp add: nrename_id SNa_eqvt)
+done
+
+lemma CANDs_imply_SNa:
+  shows "<a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M"
+  and   "(x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M"
+proof(induct B arbitrary: a x M rule: ty.induct)
+  case (PR X)
+  { case 1 
+    have "<a>:M \<in> \<parallel><PR X>\<parallel>" by fact
+    then have "<a>:M \<in> NEGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (PR X) \<union> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
+    moreover
+    { assume "<a>:M \<in> AXIOMSc (PR X)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)"
+      then have "SNa M" by (simp add: BINDING_imply_SNa)
+    }
+    ultimately show "SNa M" by blast 
+  next
+    case 2
+    have "(x):M \<in> (\<parallel>(PR X)\<parallel>)" by fact
+    then have "(x):M \<in> NEGn (PR X) (\<parallel><PR X>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (PR X) \<union> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" by simp
+    moreover
+    { assume "(x):M \<in> AXIOMSn (PR X)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)"
+      then have "SNa M" by (simp only: BINDING_imply_SNa)
+    }
+    ultimately show "SNa M" by blast
+  }
+next
+  case (NOT B)
+  have ih1: "\<And>a M. <a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih2: "\<And>x M. (x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M" by fact
+  { case 1
+    have "<a>:M \<in> (\<parallel><NOT B>\<parallel>)" by fact
+    then have "<a>:M \<in> NEGc (NOT B) (\<parallel>(NOT B)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (NOT B) \<union> BINDINGc (NOT B) (\<parallel>(NOT B)\<parallel>) \<union> NOTRIGHT (NOT B) (\<parallel>(B)\<parallel>)" by simp
+     moreover
+    { assume "<a>:M \<in> AXIOMSc (NOT B)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (NOT B) (\<parallel>(NOT B)\<parallel>)"
+      then have "SNa M" by (simp only: BINDING_imply_SNa)
+    }
+     moreover
+    { assume "<a>:M \<in> NOTRIGHT (NOT B) (\<parallel>(B)\<parallel>)"
+      then obtain x' M' where eq: "M = NotR (x').M' a" and "(x'):M' \<in> (\<parallel>(B)\<parallel>)"
+        using NOTRIGHT_elim by blast
+      then have "SNa M'" using ih2 by blast
+      then have "SNa M" using eq by (simp add: NotR_in_SNa)
+    }
+    ultimately show "SNa M" by blast
+  next
+    case 2
+    have "(x):M \<in> (\<parallel>(NOT B)\<parallel>)" by fact
+    then have "(x):M \<in> NEGn (NOT B) (\<parallel><NOT B>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (NOT B) \<union> BINDINGn (NOT B) (\<parallel><NOT B>\<parallel>) \<union> NOTLEFT (NOT B) (\<parallel><B>\<parallel>)" 
+      by (simp only: NEGn.simps)
+     moreover
+    { assume "(x):M \<in> AXIOMSn (NOT B)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (NOT B) (\<parallel><NOT B>\<parallel>)"
+      then have "SNa M" by (simp only: BINDING_imply_SNa)
+    }
+     moreover
+    { assume "(x):M \<in> NOTLEFT (NOT B) (\<parallel><B>\<parallel>)"
+      then obtain a' M' where eq: "M = NotL <a'>.M' x" and "<a'>:M' \<in> (\<parallel><B>\<parallel>)"
+        using NOTLEFT_elim by blast
+      then have "SNa M'" using ih1 by blast
+      then have "SNa M" using eq by (simp add: NotL_in_SNa)
+    }
+    ultimately show "SNa M" by blast
+  }
+next
+  case (AND A B)
+  have ih1: "\<And>a M. <a>:M \<in> \<parallel><A>\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih2: "\<And>x M. (x):M \<in> \<parallel>(A)\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih3: "\<And>a M. <a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih4: "\<And>x M. (x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M" by fact
+  { case 1
+    have "<a>:M \<in> (\<parallel><A AND B>\<parallel>)" by fact
+    then have "<a>:M \<in> NEGc (A AND B) (\<parallel>(A AND B)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (A AND B) \<union> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>) 
+                                  \<union> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" by simp
+     moreover
+    { assume "<a>:M \<in> AXIOMSc (A AND B)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)"
+      then have "SNa M" by (simp only: BINDING_imply_SNa)
+    }
+     moreover
+    { assume "<a>:M \<in> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)"
+      then obtain a' M' b' N' where eq: "M = AndR <a'>.M' <b'>.N' a" 
+                                and "<a'>:M' \<in> (\<parallel><A>\<parallel>)" and "<b'>:N' \<in> (\<parallel><B>\<parallel>)"
+        by (erule_tac ANDRIGHT_elim, blast)
+      then have "SNa M'" and "SNa N'" using ih1 ih3 by blast+
+      then have "SNa M" using eq by (simp add: AndR_in_SNa)
+    }
+    ultimately show "SNa M" by blast
+  next
+    case 2
+    have "(x):M \<in> (\<parallel>(A AND B)\<parallel>)" by fact
+    then have "(x):M \<in> NEGn (A AND B) (\<parallel><A AND B>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (A AND B) \<union> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>) 
+                       \<union> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>) \<union> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" 
+      by (simp only: NEGn.simps)
+     moreover
+    { assume "(x):M \<in> AXIOMSn (A AND B)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)"
+      then have "SNa M" by (simp only: BINDING_imply_SNa)
+    }
+     moreover
+    { assume "(x):M \<in> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>)"
+      then obtain x' M' where eq: "M = AndL1 (x').M' x" and "(x'):M' \<in> (\<parallel>(A)\<parallel>)"
+        using ANDLEFT1_elim by blast
+      then have "SNa M'" using ih2 by blast
+      then have "SNa M" using eq by (simp add: AndL1_in_SNa)
+    }
+    moreover
+    { assume "(x):M \<in> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)"
+      then obtain x' M' where eq: "M = AndL2 (x').M' x" and "(x'):M' \<in> (\<parallel>(B)\<parallel>)"
+        using ANDLEFT2_elim by blast
+      then have "SNa M'" using ih4 by blast
+      then have "SNa M" using eq by (simp add: AndL2_in_SNa)
+    }
+    ultimately show "SNa M" by blast
+  }
+next
+  case (OR A B)
+  have ih1: "\<And>a M. <a>:M \<in> \<parallel><A>\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih2: "\<And>x M. (x):M \<in> \<parallel>(A)\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih3: "\<And>a M. <a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih4: "\<And>x M. (x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M" by fact
+  { case 1
+    have "<a>:M \<in> (\<parallel><A OR B>\<parallel>)" by fact
+    then have "<a>:M \<in> NEGc (A OR B) (\<parallel>(A OR B)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (A OR B) \<union> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>) 
+                                  \<union> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>) \<union> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" by simp
+     moreover
+    { assume "<a>:M \<in> AXIOMSc (A OR B)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)"
+      then have "SNa M" by (simp only: BINDING_imply_SNa)
+    }
+     moreover
+    { assume "<a>:M \<in> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>)"
+      then obtain a' M' where eq: "M = OrR1 <a'>.M' a" 
+                                and "<a'>:M' \<in> (\<parallel><A>\<parallel>)" 
+        by (erule_tac ORRIGHT1_elim, blast)
+      then have "SNa M'" using ih1 by blast
+      then have "SNa M" using eq by (simp add: OrR1_in_SNa)
+    }
+     moreover
+    { assume "<a>:M \<in> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)"
+      then obtain a' M' where eq: "M = OrR2 <a'>.M' a" and "<a'>:M' \<in> (\<parallel><B>\<parallel>)" 
+        using ORRIGHT2_elim by blast
+      then have "SNa M'" using ih3 by blast
+      then have "SNa M" using eq by (simp add: OrR2_in_SNa)
+    }
+    ultimately show "SNa M" by blast
+  next
+    case 2
+    have "(x):M \<in> (\<parallel>(A OR B)\<parallel>)" by fact
+    then have "(x):M \<in> NEGn (A OR B) (\<parallel><A OR B>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (A OR B) \<union> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>) 
+                       \<union> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" 
+      by (simp only: NEGn.simps)
+     moreover
+    { assume "(x):M \<in> AXIOMSn (A OR B)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)"
+      then have "SNa M" by (simp only: BINDING_imply_SNa)
+    }
+     moreover
+    { assume "(x):M \<in> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)"
+      then obtain x' M' y' N' where eq: "M = OrL (x').M' (y').N' x" 
+                                and "(x'):M' \<in> (\<parallel>(A)\<parallel>)" and  "(y'):N' \<in> (\<parallel>(B)\<parallel>)"
+        by (erule_tac ORLEFT_elim, blast)
+      then have "SNa M'" and "SNa N'" using ih2 ih4 by blast+
+      then have "SNa M" using eq by (simp add: OrL_in_SNa)
+    }
+    ultimately show "SNa M" by blast
+  }
+next 
+  case (IMP A B)
+  have ih1: "\<And>a M. <a>:M \<in> \<parallel><A>\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih2: "\<And>x M. (x):M \<in> \<parallel>(A)\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih3: "\<And>a M. <a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> SNa M" by fact
+  have ih4: "\<And>x M. (x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> SNa M" by fact
+  { case 1
+    have "<a>:M \<in> (\<parallel><A IMP B>\<parallel>)" by fact
+    then have "<a>:M \<in> NEGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (A IMP B) \<union> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>) 
+                                  \<union> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" by simp
+     moreover
+    { assume "<a>:M \<in> AXIOMSc (A IMP B)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)"
+      then have "SNa M" by (simp only: BINDING_imply_SNa)
+    }
+     moreover
+    { assume "<a>:M \<in> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)"
+      then obtain x' a' M' where eq: "M = ImpR (x').<a'>.M' a" 
+                           and imp: "\<forall>z P. x'\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(B)\<parallel> \<longrightarrow> (x'):(M'{a':=(z).P}) \<in> \<parallel>(A)\<parallel>"    
+        by (erule_tac IMPRIGHT_elim, blast)
+      obtain z::"name" where fs: "z\<sharp>x'" by (rule_tac exists_fresh, rule fin_supp, blast)
+      have "(z):Ax z a'\<in> \<parallel>(B)\<parallel>" by (simp add: Ax_in_CANDs)
+      with imp fs have "(x'):(M'{a':=(z).Ax z a'}) \<in> \<parallel>(A)\<parallel>" by (simp add: fresh_prod fresh_atm)
+      then have "SNa (M'{a':=(z).Ax z a'})" using ih2 by blast
+      moreover 
+      have "M'{a':=(z).Ax z a'} \<longrightarrow>\<^isub>a* M'[a'\<turnstile>c>a']" by (simp add: subst_with_ax2)
+      ultimately have "SNa (M'[a'\<turnstile>c>a'])" by (simp add: a_star_preserves_SNa)
+      then have "SNa M'" by (simp add: crename_id)
+      then have "SNa M" using eq by (simp add: ImpR_in_SNa)
+    }
+    ultimately show "SNa M" by blast
+  next
+    case 2
+    have "(x):M \<in> (\<parallel>(A IMP B)\<parallel>)" by fact
+    then have "(x):M \<in> NEGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (A IMP B) \<union> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>) 
+                       \<union> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" 
+      by (simp only: NEGn.simps)
+     moreover
+    { assume "(x):M \<in> AXIOMSn (A IMP B)"
+      then have "SNa M" by (simp add: AXIOMS_imply_SNa)
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)"
+      then have "SNa M" by (simp only: BINDING_imply_SNa)
+    }
+     moreover
+    { assume "(x):M \<in> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)"
+      then obtain a' M' y' N' where eq: "M = ImpL <a'>.M' (y').N' x" 
+                                and "<a'>:M' \<in> (\<parallel><A>\<parallel>)" and  "(y'):N' \<in> (\<parallel>(B)\<parallel>)"
+        by (erule_tac IMPLEFT_elim, blast)
+      then have "SNa M'" and "SNa N'" using ih1 ih4 by blast+
+      then have "SNa M" using eq by (simp add: ImpL_in_SNa)
+    }
+    ultimately show "SNa M" by blast
+  }
+qed 
+
+text {* Main lemma 2 *}
+
+lemma AXIOMS_preserved:
+  shows "<a>:M \<in> AXIOMSc B \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> <a>:M' \<in> AXIOMSc B"
+  and   "(x):M \<in> AXIOMSn B \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> (x):M' \<in> AXIOMSn B"
+  apply(simp_all add: AXIOMSc_def AXIOMSn_def)
+  apply(auto simp add: ntrm.inject ctrm.inject alpha)
+  apply(drule ax_do_not_a_star_reduce)
+  apply(auto)
+  apply(drule ax_do_not_a_star_reduce)
+  apply(auto)
+  apply(drule ax_do_not_a_star_reduce)
+  apply(auto)
+  apply(drule ax_do_not_a_star_reduce)
+  apply(auto)
+  done  
+
+lemma BINDING_preserved:
+  shows "<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> <a>:M' \<in> BINDINGc B (\<parallel>(B)\<parallel>)"
+  and   "(x):M \<in> BINDINGn B (\<parallel><B>\<parallel>) \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> (x):M' \<in> BINDINGn B (\<parallel><B>\<parallel>)"
+proof -
+  assume red: "M \<longrightarrow>\<^isub>a* M'"
+  assume asm: "<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>)"
+  {
+    fix x::"name" and  P::"trm"
+    from asm have "((x):P) \<in> (\<parallel>(B)\<parallel>) \<Longrightarrow> SNa (M{a:=(x).P})" by (simp add: BINDINGc_elim)
+    moreover
+    have "M{a:=(x).P} \<longrightarrow>\<^isub>a* M'{a:=(x).P}" using red by (simp add: a_star_subst2)
+    ultimately 
+    have "((x):P) \<in> (\<parallel>(B)\<parallel>) \<Longrightarrow> SNa (M'{a:=(x).P})" by (simp add: a_star_preserves_SNa)
+  }
+  then show "<a>:M' \<in> BINDINGc B (\<parallel>(B)\<parallel>)" by (auto simp add: BINDINGc_def)
+next
+  assume red: "M \<longrightarrow>\<^isub>a* M'"
+  assume asm: "(x):M \<in> BINDINGn B (\<parallel><B>\<parallel>)"
+  {
+    fix c::"coname" and  P::"trm"
+    from asm have "(<c>:P) \<in> (\<parallel><B>\<parallel>) \<Longrightarrow> SNa (M{x:=<c>.P})" by (simp add: BINDINGn_elim)
+    moreover
+    have "M{x:=<c>.P} \<longrightarrow>\<^isub>a* M'{x:=<c>.P}" using red by (simp add: a_star_subst1)
+    ultimately 
+    have "(<c>:P) \<in> (\<parallel><B>\<parallel>) \<Longrightarrow> SNa (M'{x:=<c>.P})" by (simp add: a_star_preserves_SNa)
+  }
+  then show "(x):M' \<in> BINDINGn B (\<parallel><B>\<parallel>)" by (auto simp add: BINDINGn_def)
+qed
+    
+lemma CANDs_preserved:
+  shows "<a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>"
+  and   "(x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> M \<longrightarrow>\<^isub>a* M' \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>" 
+proof(nominal_induct B arbitrary: a x M M' rule: ty.strong_induct) 
+  case (PR X)
+  { case 1 
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "<a>:M \<in> \<parallel><PR X>\<parallel>" by fact
+    then have "<a>:M \<in> NEGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (PR X) \<union> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
+    moreover
+    { assume "<a>:M \<in> AXIOMSc (PR X)"
+      then have "<a>:M' \<in> AXIOMSc (PR X)" using asm by (simp only: AXIOMS_preserved)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)"
+      then have "<a>:M' \<in> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" using asm by (simp add: BINDING_preserved)
+    }
+    ultimately have "<a>:M' \<in> AXIOMSc (PR X) \<union> BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" by blast
+    then have "<a>:M' \<in> NEGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
+    then show "<a>:M' \<in> (\<parallel><PR X>\<parallel>)" using NEG_simp by blast
+  next
+    case 2
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "(x):M \<in> \<parallel>(PR X)\<parallel>" by fact
+    then have "(x):M \<in> NEGn (PR X) (\<parallel><PR X>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (PR X) \<union> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" by simp
+    moreover
+    { assume "(x):M \<in> AXIOMSn (PR X)"
+      then have "(x):M' \<in> AXIOMSn (PR X)" using asm by (simp only: AXIOMS_preserved) 
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)"
+      then have "(x):M' \<in> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" using asm by (simp only: BINDING_preserved)
+    }
+    ultimately have "(x):M' \<in> AXIOMSn (PR X) \<union> BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" by blast
+    then have "(x):M' \<in> NEGn (PR X) (\<parallel><PR X>\<parallel>)" by simp
+    then show "(x):M' \<in> (\<parallel>(PR X)\<parallel>)" using NEG_simp by blast
+  }
+next
+  case (IMP A B)
+  have ih1: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><A>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><A>\<parallel>" by fact
+  have ih2: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(A)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(A)\<parallel>" by fact
+  have ih3: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><B>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>" by fact
+  have ih4: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(B)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>" by fact
+  { case 1 
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "<a>:M \<in> \<parallel><A IMP B>\<parallel>" by fact
+    then have "<a>:M \<in> NEGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (A IMP B) \<union> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>) 
+                            \<union> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" by simp
+    moreover
+    { assume "<a>:M \<in> AXIOMSc (A IMP B)"
+      then have "<a>:M' \<in> AXIOMSc (A IMP B)" using asm by (simp only: AXIOMS_preserved)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)"
+      then have "<a>:M' \<in> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" using asm by (simp only: BINDING_preserved)
+    }
+    moreover
+    { assume "<a>:M \<in> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)"
+      then obtain x' a' N' where eq: "M = ImpR (x').<a'>.N' a" and fic: "fic (ImpR (x').<a'>.N' a) a"
+                           and imp1: "\<forall>z P. x'\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(B)\<parallel> \<longrightarrow> (x'):(N'{a':=(z).P}) \<in> \<parallel>(A)\<parallel>" 
+                           and imp2: "\<forall>c Q. a'\<sharp>(c,Q) \<and> <c>:Q \<in> \<parallel><A>\<parallel> \<longrightarrow> <a'>:(N'{x':=<c>.Q}) \<in> \<parallel><B>\<parallel>"
+        using IMPRIGHT_elim by blast
+      from eq asm obtain N'' where eq': "M' = ImpR (x').<a'>.N'' a" and red: "N' \<longrightarrow>\<^isub>a* N''" 
+        using a_star_redu_ImpR_elim by (blast)
+      from imp1 have "\<forall>z P. x'\<sharp>(z,P) \<and> (z):P \<in> \<parallel>(B)\<parallel> \<longrightarrow> (x'):(N''{a':=(z).P}) \<in> \<parallel>(A)\<parallel>" using red ih2
+        apply(auto)
+        apply(drule_tac x="z" in spec)
+        apply(drule_tac x="P" in spec)
+        apply(simp)
+        apply(drule_tac a_star_subst2)
+        apply(blast)
+        done
+      moreover
+      from imp2 have "\<forall>c Q. a'\<sharp>(c,Q) \<and> <c>:Q \<in> \<parallel><A>\<parallel> \<longrightarrow> <a'>:(N''{x':=<c>.Q}) \<in> \<parallel><B>\<parallel>" using red ih3
+        apply(auto)
+        apply(drule_tac x="c" in spec)
+        apply(drule_tac x="Q" in spec)
+        apply(simp)
+        apply(drule_tac a_star_subst1)
+        apply(blast)
+        done
+      moreover
+      from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
+      ultimately have "<a>:M' \<in> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" using eq' by auto
+    }
+    ultimately have "<a>:M' \<in> AXIOMSc (A IMP B) \<union> BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)
+                                            \<union> IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" by blast
+    then have "<a>:M' \<in> NEGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" by simp
+    then show "<a>:M' \<in> (\<parallel><A IMP B>\<parallel>)" using NEG_simp by blast
+  next
+    case 2
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "(x):M \<in> \<parallel>(A IMP B)\<parallel>" by fact
+    then have "(x):M \<in> NEGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (A IMP B) \<union> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>) 
+                                              \<union> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" by simp
+    moreover
+    { assume "(x):M \<in> AXIOMSn (A IMP B)"
+      then have "(x):M' \<in> AXIOMSn (A IMP B)" using asm by (simp only: AXIOMS_preserved)
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)"
+      then have "(x):M' \<in> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" using asm by (simp only: BINDING_preserved)
+    }
+    moreover
+    { assume "(x):M \<in> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)"
+      then obtain a' T' y' N' where eq: "M = ImpL <a'>.T' (y').N' x" 
+                             and fin: "fin (ImpL <a'>.T' (y').N' x) x"
+                             and imp1: "<a'>:T' \<in> \<parallel><A>\<parallel>" and imp2: "(y'):N' \<in> \<parallel>(B)\<parallel>"
+        by (erule_tac IMPLEFT_elim, blast)
+      from eq asm obtain T'' N'' where eq': "M' = ImpL <a'>.T'' (y').N'' x" 
+                                 and red1: "T' \<longrightarrow>\<^isub>a* T''"  and red2: "N' \<longrightarrow>\<^isub>a* N''"
+        using a_star_redu_ImpL_elim by blast
+      from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
+      moreover
+      from imp1 red1 have "<a'>:T'' \<in> \<parallel><A>\<parallel>" using ih1 by simp
+      moreover
+      from imp2 red2 have "(y'):N'' \<in> \<parallel>(B)\<parallel>" using ih4 by simp
+      ultimately have "(x):M' \<in> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" using eq' by (simp, blast) 
+    }
+    ultimately have "(x):M' \<in> AXIOMSn (A IMP B) \<union> BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)
+                                              \<union> IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" by blast
+    then have "(x):M' \<in> NEGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" by simp
+    then show "(x):M' \<in> (\<parallel>(A IMP B)\<parallel>)" using NEG_simp by blast
+  }
+next
+  case (AND A B)
+  have ih1: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><A>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><A>\<parallel>" by fact
+  have ih2: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(A)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(A)\<parallel>" by fact
+  have ih3: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><B>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>" by fact
+  have ih4: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(B)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>" by fact
+  { case 1 
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "<a>:M \<in> \<parallel><A AND B>\<parallel>" by fact
+    then have "<a>:M \<in> NEGc (A AND B) (\<parallel>(A AND B)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (A AND B) \<union> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>) 
+                                              \<union> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" by simp
+    moreover
+    { assume "<a>:M \<in> AXIOMSc (A AND B)"
+      then have "<a>:M' \<in> AXIOMSc (A AND B)" using asm by (simp only: AXIOMS_preserved)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)"
+      then have "<a>:M' \<in> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)" using asm by (simp only: BINDING_preserved)
+    }
+    moreover
+    { assume "<a>:M \<in> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)"
+      then obtain a' T' b' N' where eq: "M = AndR <a'>.T' <b'>.N' a" 
+                              and fic: "fic (AndR <a'>.T' <b'>.N' a) a"
+                           and imp1: "<a'>:T' \<in> \<parallel><A>\<parallel>" and imp2: "<b'>:N' \<in> \<parallel><B>\<parallel>"
+        using ANDRIGHT_elim by blast
+      from eq asm obtain T'' N'' where eq': "M' = AndR <a'>.T'' <b'>.N'' a" 
+                          and red1: "T' \<longrightarrow>\<^isub>a* T''" and red2: "N' \<longrightarrow>\<^isub>a* N''" 
+        using a_star_redu_AndR_elim by blast
+      from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
+      moreover
+      from imp1 red1 have "<a'>:T'' \<in> \<parallel><A>\<parallel>" using ih1 by simp
+      moreover
+      from imp2 red2 have "<b'>:N'' \<in> \<parallel><B>\<parallel>" using ih3 by simp
+      ultimately have "<a>:M' \<in> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" using eq' by (simp, blast) 
+    }
+    ultimately have "<a>:M' \<in> AXIOMSc (A AND B) \<union> BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)
+                                              \<union> ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" by blast
+    then have "<a>:M' \<in> NEGc (A AND B) (\<parallel>(A AND B)\<parallel>)" by simp
+    then show "<a>:M' \<in> (\<parallel><A AND B>\<parallel>)" using NEG_simp by blast
+  next
+    case 2
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "(x):M \<in> \<parallel>(A AND B)\<parallel>" by fact
+    then have "(x):M \<in> NEGn (A AND B) (\<parallel><A AND B>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (A AND B) \<union> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>) 
+                                     \<union> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>) \<union> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" by simp
+    moreover
+    { assume "(x):M \<in> AXIOMSn (A AND B)"
+      then have "(x):M' \<in> AXIOMSn (A AND B)" using asm by (simp only: AXIOMS_preserved)
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)"
+      then have "(x):M' \<in> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)" using asm by (simp only: BINDING_preserved)
+    }
+    moreover
+    { assume "(x):M \<in> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>)"
+      then obtain y' N' where eq: "M = AndL1 (y').N' x" 
+                             and fin: "fin (AndL1 (y').N' x) x" and imp: "(y'):N' \<in> \<parallel>(A)\<parallel>"
+        by (erule_tac ANDLEFT1_elim, blast)
+      from eq asm obtain N'' where eq': "M' = AndL1 (y').N'' x" and red1: "N' \<longrightarrow>\<^isub>a* N''"
+        using a_star_redu_AndL1_elim by blast
+      from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
+      moreover
+      from imp red1 have "(y'):N'' \<in> \<parallel>(A)\<parallel>" using ih2 by simp
+      ultimately have "(x):M' \<in> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>)" using eq' by (simp, blast) 
+    }
+     moreover
+    { assume "(x):M \<in> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)"
+      then obtain y' N' where eq: "M = AndL2 (y').N' x" 
+                             and fin: "fin (AndL2 (y').N' x) x" and imp: "(y'):N' \<in> \<parallel>(B)\<parallel>"
+        by (erule_tac ANDLEFT2_elim, blast)
+      from eq asm obtain N'' where eq': "M' = AndL2 (y').N'' x" and red1: "N' \<longrightarrow>\<^isub>a* N''"
+        using a_star_redu_AndL2_elim by blast
+      from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
+      moreover
+      from imp red1 have "(y'):N'' \<in> \<parallel>(B)\<parallel>" using ih4 by simp
+      ultimately have "(x):M' \<in> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" using eq' by (simp, blast) 
+    }
+    ultimately have "(x):M' \<in> AXIOMSn (A AND B) \<union> BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)
+                               \<union> ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>) \<union> ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" by blast
+    then have "(x):M' \<in> NEGn (A AND B) (\<parallel><A AND B>\<parallel>)" by simp
+    then show "(x):M' \<in> (\<parallel>(A AND B)\<parallel>)" using NEG_simp by blast
+  }
+next    
+ case (OR A B)
+  have ih1: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><A>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><A>\<parallel>" by fact
+  have ih2: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(A)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(A)\<parallel>" by fact
+  have ih3: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><B>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>" by fact
+  have ih4: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(B)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>" by fact
+  { case 1 
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "<a>:M \<in> \<parallel><A OR B>\<parallel>" by fact
+    then have "<a>:M \<in> NEGc (A OR B) (\<parallel>(A OR B)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (A OR B) \<union> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>) 
+                          \<union> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>) \<union> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" by simp
+    moreover
+    { assume "<a>:M \<in> AXIOMSc (A OR B)"
+      then have "<a>:M' \<in> AXIOMSc (A OR B)" using asm by (simp only: AXIOMS_preserved)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)"
+      then have "<a>:M' \<in> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)" using asm by (simp only: BINDING_preserved)
+    }
+    moreover
+    { assume "<a>:M \<in> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>)"
+      then obtain a' N' where eq: "M = OrR1 <a'>.N' a" 
+                              and fic: "fic (OrR1 <a'>.N' a) a" and imp1: "<a'>:N' \<in> \<parallel><A>\<parallel>"
+        using ORRIGHT1_elim by blast
+      from eq asm obtain N'' where eq': "M' = OrR1 <a'>.N'' a" and red1: "N' \<longrightarrow>\<^isub>a* N''" 
+        using a_star_redu_OrR1_elim by blast
+      from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
+      moreover
+      from imp1 red1 have "<a'>:N'' \<in> \<parallel><A>\<parallel>" using ih1 by simp
+      ultimately have "<a>:M' \<in> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>)" using eq' by (simp, blast) 
+    }
+    moreover
+    { assume "<a>:M \<in> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)"
+      then obtain a' N' where eq: "M = OrR2 <a'>.N' a" 
+                              and fic: "fic (OrR2 <a'>.N' a) a" and imp1: "<a'>:N' \<in> \<parallel><B>\<parallel>"
+        using ORRIGHT2_elim by blast
+      from eq asm obtain N'' where eq': "M' = OrR2 <a'>.N'' a" and red1: "N' \<longrightarrow>\<^isub>a* N''" 
+        using a_star_redu_OrR2_elim by blast
+      from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
+      moreover
+      from imp1 red1 have "<a'>:N'' \<in> \<parallel><B>\<parallel>" using ih3 by simp
+      ultimately have "<a>:M' \<in> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" using eq' by (simp, blast) 
+    }
+    ultimately have "<a>:M' \<in> AXIOMSc (A OR B) \<union> BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)
+                                \<union> ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>) \<union> ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" by blast
+    then have "<a>:M' \<in> NEGc (A OR B) (\<parallel>(A OR B)\<parallel>)" by simp
+    then show "<a>:M' \<in> (\<parallel><A OR B>\<parallel>)" using NEG_simp by blast
+  next
+    case 2
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "(x):M \<in> \<parallel>(A OR B)\<parallel>" by fact
+    then have "(x):M \<in> NEGn (A OR B) (\<parallel><A OR B>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (A OR B) \<union> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>) 
+                                     \<union> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" by simp
+    moreover
+    { assume "(x):M \<in> AXIOMSn (A OR B)"
+      then have "(x):M' \<in> AXIOMSn (A OR B)" using asm by (simp only: AXIOMS_preserved)
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)"
+      then have "(x):M' \<in> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)" using asm by (simp only: BINDING_preserved)
+    }
+    moreover
+    { assume "(x):M \<in> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)"
+      then obtain y' T' z' N' where eq: "M = OrL (y').T' (z').N' x" 
+                             and fin: "fin (OrL (y').T' (z').N' x) x" 
+                             and imp1: "(y'):T' \<in> \<parallel>(A)\<parallel>" and imp2: "(z'):N' \<in> \<parallel>(B)\<parallel>"
+        by (erule_tac ORLEFT_elim, blast)
+      from eq asm obtain T'' N'' where eq': "M' = OrL (y').T'' (z').N'' x" 
+                and red1: "T' \<longrightarrow>\<^isub>a* T''" and red2: "N' \<longrightarrow>\<^isub>a* N''"
+        using a_star_redu_OrL_elim by blast
+      from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
+      moreover
+      from imp1 red1 have "(y'):T'' \<in> \<parallel>(A)\<parallel>" using ih2 by simp
+      moreover
+      from imp2 red2 have "(z'):N'' \<in> \<parallel>(B)\<parallel>" using ih4 by simp
+      ultimately have "(x):M' \<in> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" using eq' by (simp, blast) 
+    }
+    ultimately have "(x):M' \<in> AXIOMSn (A OR B) \<union> BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)
+                               \<union> ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" by blast
+    then have "(x):M' \<in> NEGn (A OR B) (\<parallel><A OR B>\<parallel>)" by simp
+    then show "(x):M' \<in> (\<parallel>(A OR B)\<parallel>)" using NEG_simp by blast
+  }
+next
+  case (NOT A)
+  have ih1: "\<And>a M M'. \<lbrakk><a>:M \<in> \<parallel><A>\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> <a>:M' \<in> \<parallel><A>\<parallel>" by fact
+  have ih2: "\<And>x M M'. \<lbrakk>(x):M \<in> \<parallel>(A)\<parallel>; M \<longrightarrow>\<^isub>a* M'\<rbrakk> \<Longrightarrow> (x):M' \<in> \<parallel>(A)\<parallel>" by fact
+  { case 1 
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "<a>:M \<in> \<parallel><NOT A>\<parallel>" by fact
+    then have "<a>:M \<in> NEGc (NOT A) (\<parallel>(NOT A)\<parallel>)" by simp
+    then have "<a>:M \<in> AXIOMSc (NOT A) \<union> BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>) 
+                                              \<union> NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" by simp
+    moreover
+    { assume "<a>:M \<in> AXIOMSc (NOT A)"
+      then have "<a>:M' \<in> AXIOMSc (NOT A)" using asm by (simp only: AXIOMS_preserved)
+    }
+    moreover
+    { assume "<a>:M \<in> BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>)"
+      then have "<a>:M' \<in> BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>)" using asm by (simp only: BINDING_preserved)
+    }
+    moreover
+    { assume "<a>:M \<in> NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)"
+      then obtain y' N' where eq: "M = NotR (y').N' a" 
+                              and fic: "fic (NotR (y').N' a) a" and imp: "(y'):N' \<in> \<parallel>(A)\<parallel>"
+        using NOTRIGHT_elim by blast
+      from eq asm obtain N'' where eq': "M' = NotR (y').N'' a" and red: "N' \<longrightarrow>\<^isub>a* N''" 
+        using a_star_redu_NotR_elim by blast
+      from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
+      moreover
+      from imp red have "(y'):N'' \<in> \<parallel>(A)\<parallel>" using ih2 by simp
+      ultimately have "<a>:M' \<in> NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" using eq' by (simp, blast) 
+    }
+    ultimately have "<a>:M' \<in> AXIOMSc (NOT A) \<union> BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>)
+                                              \<union> NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" by blast
+    then have "<a>:M' \<in> NEGc (NOT A) (\<parallel>(NOT A)\<parallel>)" by simp
+    then show "<a>:M' \<in> (\<parallel><NOT A>\<parallel>)" using NEG_simp by blast
+  next
+    case 2
+    have asm: "M \<longrightarrow>\<^isub>a* M'" by fact
+    have "(x):M \<in> \<parallel>(NOT A)\<parallel>" by fact
+    then have "(x):M \<in> NEGn (NOT A) (\<parallel><NOT A>\<parallel>)" using NEG_simp by blast
+    then have "(x):M \<in> AXIOMSn (NOT A) \<union> BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>) 
+                                     \<union> NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" by simp
+    moreover
+    { assume "(x):M \<in> AXIOMSn (NOT A)"
+      then have "(x):M' \<in> AXIOMSn (NOT A)" using asm by (simp only: AXIOMS_preserved)
+    }
+    moreover
+    { assume "(x):M \<in> BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>)"
+      then have "(x):M' \<in> BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>)" using asm by (simp only: BINDING_preserved)
+    }
+    moreover
+    { assume "(x):M \<in> NOTLEFT (NOT A) (\<parallel><A>\<parallel>)"
+      then obtain a' N' where eq: "M = NotL <a'>.N' x" 
+                             and fin: "fin (NotL <a'>.N' x) x" and imp: "<a'>:N' \<in> \<parallel><A>\<parallel>"
+        by (erule_tac NOTLEFT_elim, blast)
+      from eq asm obtain N'' where eq': "M' = NotL <a'>.N'' x" and red1: "N' \<longrightarrow>\<^isub>a* N''"
+        using a_star_redu_NotL_elim by blast
+      from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
+      moreover
+      from imp red1 have "<a'>:N'' \<in> \<parallel><A>\<parallel>" using ih1 by simp
+      ultimately have "(x):M' \<in> NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" using eq' by (simp, blast) 
+    }
+    ultimately have "(x):M' \<in> AXIOMSn (NOT A) \<union> BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>)
+                               \<union> NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" by blast
+    then have "(x):M' \<in> NEGn (NOT A) (\<parallel><NOT A>\<parallel>)" by simp
+    then show "(x):M' \<in> (\<parallel>(NOT A)\<parallel>)" using NEG_simp by blast
+  }
+qed
+
+lemma CANDs_preserved_single:
+  shows "<a>:M \<in> \<parallel><B>\<parallel> \<Longrightarrow> M \<longrightarrow>\<^isub>a M' \<Longrightarrow> <a>:M' \<in> \<parallel><B>\<parallel>"
+  and   "(x):M \<in> \<parallel>(B)\<parallel> \<Longrightarrow> M \<longrightarrow>\<^isub>a M' \<Longrightarrow> (x):M' \<in> \<parallel>(B)\<parallel>"
+by (auto simp add: a_starI CANDs_preserved)
+
+lemma fic_CANDS:
+  assumes a: "\<not>fic M a"
+  and     b: "<a>:M \<in> \<parallel><B>\<parallel>"
+  shows "<a>:M \<in> AXIOMSc B \<or> <a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>)"
+using a b
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: ctrm.inject)[1]
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: calc_atm)[1]
+apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: ctrm.inject)[1]
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(erule conjE)+
+apply(simp)
+apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: ctrm.inject)[1]
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(erule conjE)+
+apply(simp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(erule conjE)+
+apply(simp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: ctrm.inject)[1]
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(erule conjE)+
+apply(simp)
+apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
+apply(simp add: calc_atm)
+done
+
+lemma fin_CANDS_aux:
+  assumes a: "\<not>fin M x"
+  and     b: "(x):M \<in> (NEGn B (\<parallel><B>\<parallel>))"
+  shows "(x):M \<in> AXIOMSn B \<or> (x):M \<in> BINDINGn B (\<parallel><B>\<parallel>)"
+using a b
+apply(nominal_induct B rule: ty.strong_induct)
+apply(simp)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: ntrm.inject)[1]
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: calc_atm)[1]
+apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: ntrm.inject)[1]
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(erule conjE)+
+apply(simp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(erule conjE)+
+apply(simp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: ntrm.inject)[1]
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(erule conjE)+
+apply(simp)
+apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(erule disjE)
+apply(simp)
+apply(auto simp add: ntrm.inject)[1]
+apply(simp add: alpha)
+apply(erule disjE)
+apply(simp)
+apply(erule conjE)+
+apply(simp)
+apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
+apply(simp add: calc_atm)
+done
+
+lemma fin_CANDS:
+  assumes a: "\<not>fin M x"
+  and     b: "(x):M \<in> (\<parallel>(B)\<parallel>)"
+  shows "(x):M \<in> AXIOMSn B \<or> (x):M \<in> BINDINGn B (\<parallel><B>\<parallel>)"
+apply(rule fin_CANDS_aux)
+apply(rule a)
+apply(rule NEG_elim)
+apply(rule b)
+done
+
+lemma BINDING_implies_CAND:
+  shows "<c>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<Longrightarrow> <c>:M \<in> (\<parallel><B>\<parallel>)"
+  and   "(x):N \<in> BINDINGn B (\<parallel><B>\<parallel>) \<Longrightarrow> (x):N \<in> (\<parallel>(B)\<parallel>)"
+apply -
+apply(nominal_induct B rule: ty.strong_induct)
+apply(auto)
+apply(rule NEG_intro)
+apply(nominal_induct B rule: ty.strong_induct)
+apply(auto)
+done
+
+end