src/HOL/Subst/Unify.ML
changeset 3192 a75558a4ed37
child 3209 ccb55f3121d1
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Subst/Unify.ML	Thu May 15 12:40:01 1997 +0200
@@ -0,0 +1,323 @@
+(*  Title:      Subst/Unify
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+
+Unification algorithm
+*)
+
+(*---------------------------------------------------------------------------
+ * This file defines a nested unification algorithm, then proves that it 
+ * terminates, then proves 2 correctness theorems: that when the algorithm
+ * succeeds, it 1) returns an MGU; and 2) returns an idempotent substitution.
+ * Although the proofs may seem long, they are actually quite direct, in that
+ * the correctness and termination properties are not mingled as much as in 
+ * previous proofs of this algorithm. 
+ *
+ * Our approach for nested recursive functions is as follows: 
+ *
+ *    0. Prove the wellfoundedness of the termination relation.
+ *    1. Prove the non-nested termination conditions.
+ *    2. Eliminate (0) and (1) from the recursion equations and the 
+ *       induction theorem.
+ *    3. Prove the nested termination conditions by using the induction 
+ *       theorem from (2) and by using the recursion equations from (2). 
+ *       These are constrained by the nested termination conditions, but 
+ *       things work out magically (by wellfoundedness of the termination 
+ *       relation).
+ *    4. Eliminate the nested TCs from the results of (2).
+ *    5. Prove further correctness properties using the results of (4).
+ *
+ * Deeper nestings require iteration of steps (3) and (4).
+ *---------------------------------------------------------------------------*)
+
+open Unify;
+
+
+
+(*---------------------------------------------------------------------------
+ * The non-nested TC plus the wellfoundedness of unifyRel.
+ *---------------------------------------------------------------------------*)
+Tfl.tgoalw Unify.thy [] unify.rules;
+(* Wellfoundedness of unifyRel *)
+by (simp_tac (!simpset addsimps [unifyRel_def, uterm_less_def,
+				 wf_inv_image, wf_lex_prod, wf_finite_psubset,
+				 wf_rel_prod, wf_measure]) 1);
+(* TC *)
+by (Step_tac 1);
+by (simp_tac (!simpset addsimps [finite_psubset_def, finite_vars_of,
+				 lex_prod_def, measure_def,
+				 inv_image_def]) 1);
+by (rtac (monotone_vars_of RS (subset_iff_psubset_eq RS iffD1) RS disjE) 1);
+by (Blast_tac 1);
+by (asm_simp_tac (!simpset addsimps [rprod_def, less_eq, less_add_Suc1]) 1);
+qed "tc0";
+
+
+(*---------------------------------------------------------------------------
+ * Eliminate tc0 from the recursion equations and the induction theorem.
+ *---------------------------------------------------------------------------*)
+val [wfr,tc] = Prim.Rules.CONJUNCTS tc0;
+val unifyRules0 = map (normalize_thm [fn th => wfr RS th, fn th => tc RS th]) 
+                     unify.rules;
+
+val unifyInduct0 = [wfr,tc] MRS unify.induct 
+                  |> read_instantiate [("P","split Q")]
+                  |> rewrite_rule [split RS eq_reflection]
+                  |> standard;
+
+
+(*---------------------------------------------------------------------------
+ * Termination proof.
+ *---------------------------------------------------------------------------*)
+
+goalw Unify.thy [trans_def,inv_image_def]
+    "!!r. trans r ==> trans (inv_image r f)";
+by (Simp_tac 1);
+by (Blast_tac 1);
+qed "trans_inv_image";
+
+goalw Unify.thy [finite_psubset_def, trans_def] "trans finite_psubset";
+by (simp_tac (!simpset addsimps [psubset_def]) 1);
+by (Blast_tac 1);
+qed "trans_finite_psubset";
+
+goalw Unify.thy [unifyRel_def,uterm_less_def,measure_def] "trans unifyRel";
+by (REPEAT (resolve_tac [trans_inv_image,trans_lex_prod,conjI, 
+			 trans_finite_psubset,
+			 trans_rprod, trans_inv_image, trans_trancl] 1));
+qed "trans_unifyRel";
+
+
+(*---------------------------------------------------------------------------
+ * The following lemma is used in the last step of the termination proof for 
+ * the nested call in Unify.  Loosely, it says that unifyRel doesn't care
+ * about term structure.
+ *---------------------------------------------------------------------------*)
+goalw Unify.thy [unifyRel_def,lex_prod_def, inv_image_def]
+     "!!x. ((X,Y), (Comb A (Comb B C), Comb D (Comb E F))) : unifyRel  ==> \
+    \      ((X,Y), (Comb (Comb A B) C, Comb (Comb D E) F)) : unifyRel";
+by (asm_full_simp_tac (!simpset addsimps [uterm_less_def, measure_def, rprod_def,
+                          less_eq, inv_image_def,add_assoc]) 1);
+by (subgoal_tac "(vars_of A Un vars_of B Un vars_of C Un \
+                \  (vars_of D Un vars_of E Un vars_of F)) = \
+                \ (vars_of A Un (vars_of B Un vars_of C) Un \
+                \  (vars_of D Un (vars_of E Un vars_of F)))" 1);
+by (Blast_tac 2);
+by (Asm_simp_tac 1);
+qed "Rassoc";
+
+
+(*---------------------------------------------------------------------------
+ * This lemma proves the nested termination condition for the base cases 
+ * 3, 4, and 6. 
+ *---------------------------------------------------------------------------*)
+goal Unify.thy
+ "!!x. ~(Var x <: M) ==>        \
+\   ((N1 <| [(x,M)], N2 <| [(x,M)]), (Comb M N1, Comb(Var x) N2)) : unifyRel \
+\ & ((N1 <| [(x,M)], N2 <| [(x,M)]), (Comb(Var x) N1, Comb M N2)) : unifyRel";
+by (case_tac "Var x = M" 1);
+by (hyp_subst_tac 1);
+by (Simp_tac 1);
+by (case_tac "x: (vars_of N1 Un vars_of N2)" 1);
+(*uterm_less case*)
+by (asm_simp_tac
+    (!simpset addsimps [less_eq, unifyRel_def, uterm_less_def,
+			rprod_def, lex_prod_def,
+			measure_def, inv_image_def]) 1);
+by (Blast_tac 1);
+(*finite_psubset case*)
+by (simp_tac
+    (!simpset addsimps [unifyRel_def, lex_prod_def,
+			measure_def, inv_image_def]) 1);
+by (simp_tac (!simpset addsimps [finite_psubset_def, finite_vars_of,
+				 psubset_def, set_eq_subset]) 1);
+by (Blast_tac 1);
+(** LEVEL 9 **)
+(*Final case, also finite_psubset*)
+by (simp_tac
+    (!simpset addsimps [finite_vars_of, unifyRel_def, finite_psubset_def,
+			lex_prod_def, measure_def, inv_image_def]) 1);
+by (cut_inst_tac [("s","[(x,M)]"), ("v", "x"), ("t","N2")] Var_elim 1);
+by (cut_inst_tac [("s","[(x,M)]"), ("v", "x"), ("t","N1")] Var_elim 3);
+by (ALLGOALS (asm_simp_tac(!simpset addsimps [srange_iff, vars_iff_occseq])));
+by (REPEAT_FIRST (resolve_tac [conjI, disjI1, psubsetI]));
+by (ALLGOALS (asm_full_simp_tac 
+	      (!simpset addsimps [srange_iff, set_eq_subset]))); 
+by (ALLGOALS
+    (fast_tac (!claset addEs [Var_intro RS disjE]
+	               unsafe_addss (!simpset addsimps [srange_iff]))));
+qed "var_elimR";
+
+
+val Some{nchotomy = subst_nchotomy,...} = assoc(!datatypes,"subst");
+
+(*---------------------------------------------------------------------------
+ * Do a case analysis on something of type 'a subst. 
+ *---------------------------------------------------------------------------*)
+
+fun subst_case_tac t =
+(cut_inst_tac [("x",t)] (subst_nchotomy RS spec) 1 
+  THEN etac disjE 1 
+  THEN rotate_tac ~1 1 
+  THEN Asm_full_simp_tac 1 
+  THEN etac exE 1
+  THEN rotate_tac ~1 1 
+  THEN Asm_full_simp_tac 1);
+
+
+(*---------------------------------------------------------------------------
+ * The nested TC. Proved by recursion induction.
+ *---------------------------------------------------------------------------*)
+val [tc1,tc2,tc3] = unify.tcs;
+goalw_cterm [] (cterm_of (sign_of Unify.thy) (USyntax.mk_prop tc3));
+(*---------------------------------------------------------------------------
+ * The extracted TC needs the scope of its quantifiers adjusted, so our 
+ * first step is to restrict the scopes of N1 and N2.
+ *---------------------------------------------------------------------------*)
+by (subgoal_tac "!M1 M2 theta.  \
+ \   unify(M1, M2) = Subst theta --> \
+ \   (!N1 N2. ((N1<|theta, N2<|theta), Comb M1 N1, Comb M2 N2) : unifyRel)" 1);
+by (Blast_tac 1);
+by (rtac allI 1); 
+by (rtac allI 1);
+(* Apply induction *)
+by (res_inst_tac [("v","M1"),("v1.0","M2")] unifyInduct0 1);
+by (ALLGOALS 
+    (asm_simp_tac (!simpset addsimps (var_elimR::unifyRules0)
+			    setloop (split_tac [expand_if]))));
+(*Const-Const case*)
+by (simp_tac
+    (!simpset addsimps [unifyRel_def, lex_prod_def, measure_def,
+			inv_image_def, less_eq, uterm_less_def, rprod_def]) 1);
+(** LEVEL 7 **)
+(*Comb-Comb case*)
+by (subst_case_tac "unify(M1a, M2a)");
+by (rename_tac "theta" 1);
+by (subst_case_tac "unify(N1 <| theta, N2 <| theta)");
+by (rename_tac "sigma" 1);
+by (REPEAT (rtac allI 1));
+by (rename_tac "P Q" 1); 
+by (rtac (trans_unifyRel RS transD) 1);
+by (Blast_tac 1);
+by (simp_tac (HOL_ss addsimps [subst_Comb RS sym]) 1);
+by (subgoal_tac "((Comb N1 P <| theta, Comb N2 Q <| theta), \
+                \ (Comb M1a (Comb N1 P), Comb M2a (Comb N2 Q))) :unifyRel" 1);
+by (asm_simp_tac HOL_ss 2);
+by (rtac Rassoc 1);
+by (Blast_tac 1);
+qed_spec_mp "unify_TC2";
+
+
+(*---------------------------------------------------------------------------
+ * Now for elimination of nested TC from unify.rules and induction. 
+ *---------------------------------------------------------------------------*)
+
+(*Desired rule, copied from the theory file.  Could it be made available?*)
+goal Unify.thy 
+  "unify(Comb M1 N1, Comb M2 N2) =      \
+\      (case unify(M1,M2)               \
+\        of Fail => Fail                \
+\         | Subst theta => (case unify(N1 <| theta, N2 <| theta)        \
+\                            of Fail => Fail    \
+\                             | Subst sigma => Subst (theta <> sigma)))";
+by (asm_simp_tac (!simpset addsimps unifyRules0) 1);
+by (subst_case_tac "unify(M1, M2)");
+by (asm_simp_tac (!simpset addsimps [unify_TC2]) 1);
+qed "unifyCombComb";
+
+
+val unifyRules = rev (unifyCombComb :: tl (rev unifyRules0));
+
+Addsimps unifyRules;
+
+val prems = goal Unify.thy 
+"   [| !!m n. Q (Const m) (Const n);      \
+\      !!m M N. Q (Const m) (Comb M N); !!m x. Q (Const m) (Var x);     \
+\      !!x M. Q (Var x) M; !!M N x. Q (Comb M N) (Const x);     \
+\      !!M N x. Q (Comb M N) (Var x);   \
+\      !!M1 N1 M2 N2.   \
+\         (! theta.     \
+\             unify (M1, M2) = Subst theta -->  \
+\             Q (N1 <| theta) (N2 <| theta)) & Q M1 M2   \
+\         ==> Q (Comb M1 N1) (Comb M2 N2) |] ==> Q M1 M2";
+by (res_inst_tac [("v","M1"),("v1.0","M2")] unifyInduct0 1);
+by (ALLGOALS (asm_simp_tac (!simpset addsimps (unify_TC2::prems))));
+qed "unifyInduct";
+
+
+
+(*---------------------------------------------------------------------------
+ * Correctness. Notice that idempotence is not needed to prove that the 
+ * algorithm terminates and is not needed to prove the algorithm correct, 
+ * if you are only interested in an MGU.  This is in contrast to the
+ * approach of M&W, who used idempotence and MGU-ness in the termination proof.
+ *---------------------------------------------------------------------------*)
+
+goal Unify.thy "!theta. unify(P,Q) = Subst theta --> MGUnifier theta P Q";
+by (res_inst_tac [("M1.0","P"),("M2.0","Q")] unifyInduct 1);
+by (ALLGOALS (asm_simp_tac (!simpset setloop split_tac [expand_if])));
+(*Const-Const case*)
+by (simp_tac (!simpset addsimps [MGUnifier_def,Unifier_def]) 1);
+(*Const-Var case*)
+by (stac mgu_sym 1);
+by (simp_tac (!simpset addsimps [MGUnifier_Var]) 1);
+(*Var-M case*)
+by (simp_tac (!simpset addsimps [MGUnifier_Var]) 1);
+(*Comb-Var case*)
+by (stac mgu_sym 1);
+by (simp_tac (!simpset addsimps [MGUnifier_Var]) 1);
+(*Comb-Comb case*)
+by (safe_tac (!claset));
+by (subst_case_tac "unify(M1, M2)");
+by (subst_case_tac "unify(N1<|list, N2<|list)");
+by (hyp_subst_tac 1);
+by (asm_full_simp_tac (!simpset addsimps [MGUnifier_def, Unifier_def])1);
+(** LEVEL 13 **)
+by (safe_tac (!claset));
+by (rename_tac "theta sigma gamma" 1);
+by (rewrite_goals_tac [MoreGeneral_def]);
+by (rotate_tac ~3 1);
+by (eres_inst_tac [("x","gamma")] allE 1);
+by (Asm_full_simp_tac 1);
+by (etac exE 1);
+by (rename_tac "delta" 1);
+by (eres_inst_tac [("x","delta")] allE 1);
+by (subgoal_tac "N1 <| theta <| delta = N2 <| theta <| delta" 1);
+(*Proving the subgoal*)
+by (full_simp_tac (!simpset addsimps [subst_eq_iff]) 2);
+by (blast_tac (!claset addIs [trans,sym] delrules [impCE]) 2);
+by (blast_tac (!claset addIs [subst_trans, subst_cong, 
+			      comp_assoc RS subst_sym]) 1);
+qed_spec_mp "unify_gives_MGU";
+
+
+(*---------------------------------------------------------------------------
+ * Unify returns idempotent substitutions, when it succeeds.
+ *---------------------------------------------------------------------------*)
+goal Unify.thy "!theta. unify(P,Q) = Subst theta --> Idem theta";
+by (res_inst_tac [("M1.0","P"),("M2.0","Q")] unifyInduct 1);
+by (ALLGOALS (asm_simp_tac (!simpset addsimps [Var_Idem] 
+			             setloop split_tac[expand_if])));
+(*Comb-Comb case*)
+by (safe_tac (!claset));
+by (subst_case_tac "unify(M1, M2)");
+by (subst_case_tac "unify(N1 <| list, N2 <| list)");
+by (hyp_subst_tac 1);
+by prune_params_tac;
+by (rename_tac "theta sigma" 1);
+(** LEVEL 8 **)
+by (dtac unify_gives_MGU 1);
+by (dtac unify_gives_MGU 1);
+by (rewrite_tac [MGUnifier_def]);
+by (safe_tac (!claset));
+by (rtac Idem_comp 1);
+by (atac 1);
+by (atac 1);
+
+by (eres_inst_tac [("x","q")] allE 1);
+by (asm_full_simp_tac (!simpset addsimps [MoreGeneral_def]) 1);
+by (safe_tac (!claset));
+by (asm_full_simp_tac
+    (!simpset addsimps [srange_iff, subst_eq_iff, Idem_def]) 1);
+qed_spec_mp "unify_gives_Idem";
+