3192
|
1 |
(* Title: Subst/Unify
|
|
2 |
Author: Konrad Slind, Cambridge University Computer Laboratory
|
|
3 |
Copyright 1997 University of Cambridge
|
|
4 |
|
|
5 |
Unification algorithm
|
|
6 |
*)
|
|
7 |
|
|
8 |
(*---------------------------------------------------------------------------
|
|
9 |
* This file defines a nested unification algorithm, then proves that it
|
|
10 |
* terminates, then proves 2 correctness theorems: that when the algorithm
|
|
11 |
* succeeds, it 1) returns an MGU; and 2) returns an idempotent substitution.
|
|
12 |
* Although the proofs may seem long, they are actually quite direct, in that
|
|
13 |
* the correctness and termination properties are not mingled as much as in
|
|
14 |
* previous proofs of this algorithm.
|
|
15 |
*
|
|
16 |
* Our approach for nested recursive functions is as follows:
|
|
17 |
*
|
|
18 |
* 0. Prove the wellfoundedness of the termination relation.
|
|
19 |
* 1. Prove the non-nested termination conditions.
|
|
20 |
* 2. Eliminate (0) and (1) from the recursion equations and the
|
|
21 |
* induction theorem.
|
|
22 |
* 3. Prove the nested termination conditions by using the induction
|
|
23 |
* theorem from (2) and by using the recursion equations from (2).
|
|
24 |
* These are constrained by the nested termination conditions, but
|
|
25 |
* things work out magically (by wellfoundedness of the termination
|
|
26 |
* relation).
|
|
27 |
* 4. Eliminate the nested TCs from the results of (2).
|
|
28 |
* 5. Prove further correctness properties using the results of (4).
|
|
29 |
*
|
|
30 |
* Deeper nestings require iteration of steps (3) and (4).
|
|
31 |
*---------------------------------------------------------------------------*)
|
|
32 |
|
|
33 |
open Unify;
|
|
34 |
|
|
35 |
|
|
36 |
|
|
37 |
(*---------------------------------------------------------------------------
|
|
38 |
* The non-nested TC plus the wellfoundedness of unifyRel.
|
|
39 |
*---------------------------------------------------------------------------*)
|
|
40 |
Tfl.tgoalw Unify.thy [] unify.rules;
|
|
41 |
(* Wellfoundedness of unifyRel *)
|
|
42 |
by (simp_tac (!simpset addsimps [unifyRel_def, uterm_less_def,
|
|
43 |
wf_inv_image, wf_lex_prod, wf_finite_psubset,
|
|
44 |
wf_rel_prod, wf_measure]) 1);
|
|
45 |
(* TC *)
|
|
46 |
by (Step_tac 1);
|
|
47 |
by (simp_tac (!simpset addsimps [finite_psubset_def, finite_vars_of,
|
|
48 |
lex_prod_def, measure_def,
|
|
49 |
inv_image_def]) 1);
|
|
50 |
by (rtac (monotone_vars_of RS (subset_iff_psubset_eq RS iffD1) RS disjE) 1);
|
|
51 |
by (Blast_tac 1);
|
|
52 |
by (asm_simp_tac (!simpset addsimps [rprod_def, less_eq, less_add_Suc1]) 1);
|
|
53 |
qed "tc0";
|
|
54 |
|
|
55 |
|
|
56 |
(*---------------------------------------------------------------------------
|
|
57 |
* Eliminate tc0 from the recursion equations and the induction theorem.
|
|
58 |
*---------------------------------------------------------------------------*)
|
|
59 |
val [wfr,tc] = Prim.Rules.CONJUNCTS tc0;
|
|
60 |
val unifyRules0 = map (normalize_thm [fn th => wfr RS th, fn th => tc RS th])
|
|
61 |
unify.rules;
|
|
62 |
|
|
63 |
val unifyInduct0 = [wfr,tc] MRS unify.induct
|
|
64 |
|> read_instantiate [("P","split Q")]
|
|
65 |
|> rewrite_rule [split RS eq_reflection]
|
|
66 |
|> standard;
|
|
67 |
|
|
68 |
|
|
69 |
(*---------------------------------------------------------------------------
|
|
70 |
* Termination proof.
|
|
71 |
*---------------------------------------------------------------------------*)
|
|
72 |
|
|
73 |
goalw Unify.thy [trans_def,inv_image_def]
|
|
74 |
"!!r. trans r ==> trans (inv_image r f)";
|
|
75 |
by (Simp_tac 1);
|
|
76 |
by (Blast_tac 1);
|
|
77 |
qed "trans_inv_image";
|
|
78 |
|
|
79 |
goalw Unify.thy [finite_psubset_def, trans_def] "trans finite_psubset";
|
|
80 |
by (simp_tac (!simpset addsimps [psubset_def]) 1);
|
|
81 |
by (Blast_tac 1);
|
|
82 |
qed "trans_finite_psubset";
|
|
83 |
|
|
84 |
goalw Unify.thy [unifyRel_def,uterm_less_def,measure_def] "trans unifyRel";
|
|
85 |
by (REPEAT (resolve_tac [trans_inv_image,trans_lex_prod,conjI,
|
|
86 |
trans_finite_psubset,
|
|
87 |
trans_rprod, trans_inv_image, trans_trancl] 1));
|
|
88 |
qed "trans_unifyRel";
|
|
89 |
|
|
90 |
|
|
91 |
(*---------------------------------------------------------------------------
|
|
92 |
* The following lemma is used in the last step of the termination proof for
|
|
93 |
* the nested call in Unify. Loosely, it says that unifyRel doesn't care
|
|
94 |
* about term structure.
|
|
95 |
*---------------------------------------------------------------------------*)
|
|
96 |
goalw Unify.thy [unifyRel_def,lex_prod_def, inv_image_def]
|
|
97 |
"!!x. ((X,Y), (Comb A (Comb B C), Comb D (Comb E F))) : unifyRel ==> \
|
|
98 |
\ ((X,Y), (Comb (Comb A B) C, Comb (Comb D E) F)) : unifyRel";
|
|
99 |
by (asm_full_simp_tac (!simpset addsimps [uterm_less_def, measure_def, rprod_def,
|
|
100 |
less_eq, inv_image_def,add_assoc]) 1);
|
|
101 |
by (subgoal_tac "(vars_of A Un vars_of B Un vars_of C Un \
|
|
102 |
\ (vars_of D Un vars_of E Un vars_of F)) = \
|
|
103 |
\ (vars_of A Un (vars_of B Un vars_of C) Un \
|
|
104 |
\ (vars_of D Un (vars_of E Un vars_of F)))" 1);
|
|
105 |
by (Blast_tac 2);
|
|
106 |
by (Asm_simp_tac 1);
|
|
107 |
qed "Rassoc";
|
|
108 |
|
|
109 |
|
|
110 |
(*---------------------------------------------------------------------------
|
|
111 |
* This lemma proves the nested termination condition for the base cases
|
|
112 |
* 3, 4, and 6.
|
|
113 |
*---------------------------------------------------------------------------*)
|
|
114 |
goal Unify.thy
|
|
115 |
"!!x. ~(Var x <: M) ==> \
|
|
116 |
\ ((N1 <| [(x,M)], N2 <| [(x,M)]), (Comb M N1, Comb(Var x) N2)) : unifyRel \
|
|
117 |
\ & ((N1 <| [(x,M)], N2 <| [(x,M)]), (Comb(Var x) N1, Comb M N2)) : unifyRel";
|
|
118 |
by (case_tac "Var x = M" 1);
|
|
119 |
by (hyp_subst_tac 1);
|
|
120 |
by (Simp_tac 1);
|
|
121 |
by (case_tac "x: (vars_of N1 Un vars_of N2)" 1);
|
|
122 |
(*uterm_less case*)
|
|
123 |
by (asm_simp_tac
|
|
124 |
(!simpset addsimps [less_eq, unifyRel_def, uterm_less_def,
|
|
125 |
rprod_def, lex_prod_def,
|
|
126 |
measure_def, inv_image_def]) 1);
|
|
127 |
by (Blast_tac 1);
|
|
128 |
(*finite_psubset case*)
|
|
129 |
by (simp_tac
|
|
130 |
(!simpset addsimps [unifyRel_def, lex_prod_def,
|
|
131 |
measure_def, inv_image_def]) 1);
|
|
132 |
by (simp_tac (!simpset addsimps [finite_psubset_def, finite_vars_of,
|
|
133 |
psubset_def, set_eq_subset]) 1);
|
|
134 |
by (Blast_tac 1);
|
|
135 |
(** LEVEL 9 **)
|
|
136 |
(*Final case, also finite_psubset*)
|
|
137 |
by (simp_tac
|
|
138 |
(!simpset addsimps [finite_vars_of, unifyRel_def, finite_psubset_def,
|
|
139 |
lex_prod_def, measure_def, inv_image_def]) 1);
|
|
140 |
by (cut_inst_tac [("s","[(x,M)]"), ("v", "x"), ("t","N2")] Var_elim 1);
|
|
141 |
by (cut_inst_tac [("s","[(x,M)]"), ("v", "x"), ("t","N1")] Var_elim 3);
|
|
142 |
by (ALLGOALS (asm_simp_tac(!simpset addsimps [srange_iff, vars_iff_occseq])));
|
|
143 |
by (REPEAT_FIRST (resolve_tac [conjI, disjI1, psubsetI]));
|
|
144 |
by (ALLGOALS (asm_full_simp_tac
|
|
145 |
(!simpset addsimps [srange_iff, set_eq_subset])));
|
|
146 |
by (ALLGOALS
|
|
147 |
(fast_tac (!claset addEs [Var_intro RS disjE]
|
|
148 |
unsafe_addss (!simpset addsimps [srange_iff]))));
|
|
149 |
qed "var_elimR";
|
|
150 |
|
|
151 |
|
|
152 |
val Some{nchotomy = subst_nchotomy,...} = assoc(!datatypes,"subst");
|
|
153 |
|
|
154 |
(*---------------------------------------------------------------------------
|
|
155 |
* Do a case analysis on something of type 'a subst.
|
|
156 |
*---------------------------------------------------------------------------*)
|
|
157 |
|
|
158 |
fun subst_case_tac t =
|
|
159 |
(cut_inst_tac [("x",t)] (subst_nchotomy RS spec) 1
|
|
160 |
THEN etac disjE 1
|
|
161 |
THEN rotate_tac ~1 1
|
|
162 |
THEN Asm_full_simp_tac 1
|
|
163 |
THEN etac exE 1
|
|
164 |
THEN rotate_tac ~1 1
|
|
165 |
THEN Asm_full_simp_tac 1);
|
|
166 |
|
|
167 |
|
|
168 |
(*---------------------------------------------------------------------------
|
|
169 |
* The nested TC. Proved by recursion induction.
|
|
170 |
*---------------------------------------------------------------------------*)
|
|
171 |
val [tc1,tc2,tc3] = unify.tcs;
|
|
172 |
goalw_cterm [] (cterm_of (sign_of Unify.thy) (USyntax.mk_prop tc3));
|
|
173 |
(*---------------------------------------------------------------------------
|
|
174 |
* The extracted TC needs the scope of its quantifiers adjusted, so our
|
|
175 |
* first step is to restrict the scopes of N1 and N2.
|
|
176 |
*---------------------------------------------------------------------------*)
|
|
177 |
by (subgoal_tac "!M1 M2 theta. \
|
|
178 |
\ unify(M1, M2) = Subst theta --> \
|
|
179 |
\ (!N1 N2. ((N1<|theta, N2<|theta), Comb M1 N1, Comb M2 N2) : unifyRel)" 1);
|
|
180 |
by (Blast_tac 1);
|
|
181 |
by (rtac allI 1);
|
|
182 |
by (rtac allI 1);
|
|
183 |
(* Apply induction *)
|
|
184 |
by (res_inst_tac [("v","M1"),("v1.0","M2")] unifyInduct0 1);
|
|
185 |
by (ALLGOALS
|
|
186 |
(asm_simp_tac (!simpset addsimps (var_elimR::unifyRules0)
|
|
187 |
setloop (split_tac [expand_if]))));
|
|
188 |
(*Const-Const case*)
|
|
189 |
by (simp_tac
|
|
190 |
(!simpset addsimps [unifyRel_def, lex_prod_def, measure_def,
|
|
191 |
inv_image_def, less_eq, uterm_less_def, rprod_def]) 1);
|
|
192 |
(** LEVEL 7 **)
|
|
193 |
(*Comb-Comb case*)
|
|
194 |
by (subst_case_tac "unify(M1a, M2a)");
|
|
195 |
by (rename_tac "theta" 1);
|
|
196 |
by (subst_case_tac "unify(N1 <| theta, N2 <| theta)");
|
|
197 |
by (rename_tac "sigma" 1);
|
|
198 |
by (REPEAT (rtac allI 1));
|
|
199 |
by (rename_tac "P Q" 1);
|
|
200 |
by (rtac (trans_unifyRel RS transD) 1);
|
|
201 |
by (Blast_tac 1);
|
|
202 |
by (simp_tac (HOL_ss addsimps [subst_Comb RS sym]) 1);
|
|
203 |
by (subgoal_tac "((Comb N1 P <| theta, Comb N2 Q <| theta), \
|
|
204 |
\ (Comb M1a (Comb N1 P), Comb M2a (Comb N2 Q))) :unifyRel" 1);
|
|
205 |
by (asm_simp_tac HOL_ss 2);
|
|
206 |
by (rtac Rassoc 1);
|
|
207 |
by (Blast_tac 1);
|
|
208 |
qed_spec_mp "unify_TC2";
|
|
209 |
|
|
210 |
|
|
211 |
(*---------------------------------------------------------------------------
|
|
212 |
* Now for elimination of nested TC from unify.rules and induction.
|
|
213 |
*---------------------------------------------------------------------------*)
|
|
214 |
|
|
215 |
(*Desired rule, copied from the theory file. Could it be made available?*)
|
|
216 |
goal Unify.thy
|
|
217 |
"unify(Comb M1 N1, Comb M2 N2) = \
|
|
218 |
\ (case unify(M1,M2) \
|
|
219 |
\ of Fail => Fail \
|
|
220 |
\ | Subst theta => (case unify(N1 <| theta, N2 <| theta) \
|
|
221 |
\ of Fail => Fail \
|
|
222 |
\ | Subst sigma => Subst (theta <> sigma)))";
|
|
223 |
by (asm_simp_tac (!simpset addsimps unifyRules0) 1);
|
|
224 |
by (subst_case_tac "unify(M1, M2)");
|
|
225 |
by (asm_simp_tac (!simpset addsimps [unify_TC2]) 1);
|
|
226 |
qed "unifyCombComb";
|
|
227 |
|
|
228 |
|
|
229 |
val unifyRules = rev (unifyCombComb :: tl (rev unifyRules0));
|
|
230 |
|
|
231 |
Addsimps unifyRules;
|
|
232 |
|
|
233 |
val prems = goal Unify.thy
|
|
234 |
" [| !!m n. Q (Const m) (Const n); \
|
|
235 |
\ !!m M N. Q (Const m) (Comb M N); !!m x. Q (Const m) (Var x); \
|
|
236 |
\ !!x M. Q (Var x) M; !!M N x. Q (Comb M N) (Const x); \
|
|
237 |
\ !!M N x. Q (Comb M N) (Var x); \
|
|
238 |
\ !!M1 N1 M2 N2. \
|
|
239 |
\ (! theta. \
|
|
240 |
\ unify (M1, M2) = Subst theta --> \
|
|
241 |
\ Q (N1 <| theta) (N2 <| theta)) & Q M1 M2 \
|
|
242 |
\ ==> Q (Comb M1 N1) (Comb M2 N2) |] ==> Q M1 M2";
|
|
243 |
by (res_inst_tac [("v","M1"),("v1.0","M2")] unifyInduct0 1);
|
|
244 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps (unify_TC2::prems))));
|
|
245 |
qed "unifyInduct";
|
|
246 |
|
|
247 |
|
|
248 |
|
|
249 |
(*---------------------------------------------------------------------------
|
|
250 |
* Correctness. Notice that idempotence is not needed to prove that the
|
|
251 |
* algorithm terminates and is not needed to prove the algorithm correct,
|
|
252 |
* if you are only interested in an MGU. This is in contrast to the
|
|
253 |
* approach of M&W, who used idempotence and MGU-ness in the termination proof.
|
|
254 |
*---------------------------------------------------------------------------*)
|
|
255 |
|
|
256 |
goal Unify.thy "!theta. unify(P,Q) = Subst theta --> MGUnifier theta P Q";
|
|
257 |
by (res_inst_tac [("M1.0","P"),("M2.0","Q")] unifyInduct 1);
|
|
258 |
by (ALLGOALS (asm_simp_tac (!simpset setloop split_tac [expand_if])));
|
|
259 |
(*Const-Const case*)
|
|
260 |
by (simp_tac (!simpset addsimps [MGUnifier_def,Unifier_def]) 1);
|
|
261 |
(*Const-Var case*)
|
|
262 |
by (stac mgu_sym 1);
|
|
263 |
by (simp_tac (!simpset addsimps [MGUnifier_Var]) 1);
|
|
264 |
(*Var-M case*)
|
|
265 |
by (simp_tac (!simpset addsimps [MGUnifier_Var]) 1);
|
|
266 |
(*Comb-Var case*)
|
|
267 |
by (stac mgu_sym 1);
|
|
268 |
by (simp_tac (!simpset addsimps [MGUnifier_Var]) 1);
|
|
269 |
(*Comb-Comb case*)
|
|
270 |
by (safe_tac (!claset));
|
|
271 |
by (subst_case_tac "unify(M1, M2)");
|
|
272 |
by (subst_case_tac "unify(N1<|list, N2<|list)");
|
|
273 |
by (hyp_subst_tac 1);
|
|
274 |
by (asm_full_simp_tac (!simpset addsimps [MGUnifier_def, Unifier_def])1);
|
|
275 |
(** LEVEL 13 **)
|
|
276 |
by (safe_tac (!claset));
|
|
277 |
by (rename_tac "theta sigma gamma" 1);
|
|
278 |
by (rewrite_goals_tac [MoreGeneral_def]);
|
|
279 |
by (rotate_tac ~3 1);
|
|
280 |
by (eres_inst_tac [("x","gamma")] allE 1);
|
|
281 |
by (Asm_full_simp_tac 1);
|
|
282 |
by (etac exE 1);
|
|
283 |
by (rename_tac "delta" 1);
|
|
284 |
by (eres_inst_tac [("x","delta")] allE 1);
|
|
285 |
by (subgoal_tac "N1 <| theta <| delta = N2 <| theta <| delta" 1);
|
|
286 |
(*Proving the subgoal*)
|
|
287 |
by (full_simp_tac (!simpset addsimps [subst_eq_iff]) 2);
|
|
288 |
by (blast_tac (!claset addIs [trans,sym] delrules [impCE]) 2);
|
|
289 |
by (blast_tac (!claset addIs [subst_trans, subst_cong,
|
|
290 |
comp_assoc RS subst_sym]) 1);
|
|
291 |
qed_spec_mp "unify_gives_MGU";
|
|
292 |
|
|
293 |
|
|
294 |
(*---------------------------------------------------------------------------
|
|
295 |
* Unify returns idempotent substitutions, when it succeeds.
|
|
296 |
*---------------------------------------------------------------------------*)
|
|
297 |
goal Unify.thy "!theta. unify(P,Q) = Subst theta --> Idem theta";
|
|
298 |
by (res_inst_tac [("M1.0","P"),("M2.0","Q")] unifyInduct 1);
|
|
299 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps [Var_Idem]
|
|
300 |
setloop split_tac[expand_if])));
|
|
301 |
(*Comb-Comb case*)
|
|
302 |
by (safe_tac (!claset));
|
|
303 |
by (subst_case_tac "unify(M1, M2)");
|
|
304 |
by (subst_case_tac "unify(N1 <| list, N2 <| list)");
|
|
305 |
by (hyp_subst_tac 1);
|
|
306 |
by prune_params_tac;
|
|
307 |
by (rename_tac "theta sigma" 1);
|
|
308 |
(** LEVEL 8 **)
|
|
309 |
by (dtac unify_gives_MGU 1);
|
|
310 |
by (dtac unify_gives_MGU 1);
|
|
311 |
by (rewrite_tac [MGUnifier_def]);
|
|
312 |
by (safe_tac (!claset));
|
|
313 |
by (rtac Idem_comp 1);
|
|
314 |
by (atac 1);
|
|
315 |
by (atac 1);
|
|
316 |
|
|
317 |
by (eres_inst_tac [("x","q")] allE 1);
|
|
318 |
by (asm_full_simp_tac (!simpset addsimps [MoreGeneral_def]) 1);
|
|
319 |
by (safe_tac (!claset));
|
|
320 |
by (asm_full_simp_tac
|
|
321 |
(!simpset addsimps [srange_iff, subst_eq_iff, Idem_def]) 1);
|
|
322 |
qed_spec_mp "unify_gives_Idem";
|
|
323 |
|