src/HOL/Library/Tree.thy
changeset 31459 ae39b7b2a68a
child 35158 63d0ed5a027c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Tree.thy	Thu Jun 04 16:55:20 2009 +0200
@@ -0,0 +1,142 @@
+(* Author: Florian Haftmann, TU Muenchen *)
+
+header {* Trees implementing mappings. *}
+
+theory Tree
+imports Mapping
+begin
+
+subsection {* Type definition and operations *}
+
+datatype ('a, 'b) tree = Empty
+  | Branch 'b 'a "('a, 'b) tree" "('a, 'b) tree"
+
+primrec lookup :: "('a\<Colon>linorder, 'b) tree \<Rightarrow> 'a \<rightharpoonup> 'b" where
+  "lookup Empty = (\<lambda>_. None)"
+  | "lookup (Branch v k l r) = (\<lambda>k'. if k' = k then Some v
+       else if k' \<le> k then lookup l k' else lookup r k')"
+
+primrec update :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) tree \<Rightarrow> ('a, 'b) tree" where
+  "update k v Empty = Branch v k Empty Empty"
+  | "update k' v' (Branch v k l r) = (if k' = k then
+      Branch v' k l r else if k' \<le> k
+      then Branch v k (update k' v' l) r
+      else Branch v k l (update k' v' r))"
+
+primrec keys :: "('a\<Colon>linorder, 'b) tree \<Rightarrow> 'a list" where
+  "keys Empty = []"
+  | "keys (Branch _ k l r) = k # keys l @ keys r"
+
+definition size :: "('a\<Colon>linorder, 'b) tree \<Rightarrow> nat" where
+  "size t = length (filter (\<lambda>x. x \<noteq> None) (map (lookup t) (remdups (keys t))))"
+
+fun bulkload :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) tree" where
+  [simp del]: "bulkload ks f = (case ks of [] \<Rightarrow> Empty | _ \<Rightarrow> let
+     mid = length ks div 2;
+     ys = take mid ks;
+     x = ks ! mid;
+     zs = drop (Suc mid) ks
+   in Branch (f x) x (bulkload ys f) (bulkload zs f))"
+
+
+subsection {* Properties *}
+
+lemma dom_lookup:
+  "dom (Tree.lookup t) = set (filter (\<lambda>k. lookup t k \<noteq> None) (remdups (keys t)))"
+proof -
+  have "dom (Tree.lookup t) = set (filter (\<lambda>k. lookup t k \<noteq> None) (keys t))"
+  by (induct t) (auto simp add: dom_if)
+  also have "\<dots> = set (filter (\<lambda>k. lookup t k \<noteq> None) (remdups (keys t)))"
+    by simp
+  finally show ?thesis .
+qed
+
+lemma lookup_finite:
+  "finite (dom (lookup t))"
+  unfolding dom_lookup by simp
+
+lemma lookup_update:
+  "lookup (update k v t) = (lookup t)(k \<mapsto> v)"
+  by (induct t) (simp_all add: expand_fun_eq)
+
+lemma lookup_bulkload:
+  "sorted ks \<Longrightarrow> lookup (bulkload ks f) = (Some o f) |` set ks"
+proof (induct ks f rule: bulkload.induct)
+  case (1 ks f) show ?case proof (cases ks)
+    case Nil then show ?thesis by (simp add: bulkload.simps)
+  next
+    case (Cons w ws)
+    then have case_simp: "\<And>w v::('a, 'b) tree. (case ks of [] \<Rightarrow> v | _ \<Rightarrow> w) = w"
+      by (cases ks) auto
+    from Cons have "ks \<noteq> []" by simp
+    then have "0 < length ks" by simp
+    let ?mid = "length ks div 2"
+    let ?ys = "take ?mid ks"
+    let ?x = "ks ! ?mid"
+    let ?zs = "drop (Suc ?mid) ks"
+    from `ks \<noteq> []` have ks_split: "ks = ?ys @ [?x] @ ?zs"
+      by (simp add: id_take_nth_drop)
+    then have in_ks: "\<And>x. x \<in> set ks \<longleftrightarrow> x \<in> set (?ys @ [?x] @ ?zs)"
+      by simp
+    with ks_split have ys_x: "\<And>y. y \<in> set ?ys \<Longrightarrow> y \<le> ?x"
+      and x_zs: "\<And>z. z \<in> set ?zs \<Longrightarrow> ?x \<le> z"
+    using `sorted ks` sorted_append [of "?ys" "[?x] @ ?zs"] sorted_append [of "[?x]" "?zs"]
+      by simp_all
+    have ys: "lookup (bulkload ?ys f) = (Some o f) |` set ?ys"
+      by (rule "1.hyps"(1)) (auto intro: Cons sorted_take `sorted ks`)
+    have zs: "lookup (bulkload ?zs f) = (Some o f) |` set ?zs"
+      by (rule "1.hyps"(2)) (auto intro: Cons sorted_drop `sorted ks`)
+    show ?thesis using `0 < length ks`
+      by (simp add: bulkload.simps)
+        (auto simp add: restrict_map_def in_ks case_simp Let_def ys zs expand_fun_eq
+           dest: in_set_takeD in_set_dropD ys_x x_zs)
+  qed
+qed
+
+
+subsection {* Trees as mappings *}
+
+definition Tree :: "('a\<Colon>linorder, 'b) tree \<Rightarrow> ('a, 'b) map" where
+  "Tree t = Map (Tree.lookup t)"
+
+lemma [code, code del]:
+  "(eq_class.eq :: (_, _) map \<Rightarrow> _) = eq_class.eq" ..
+
+lemma [code, code del]:
+  "Mapping.delete k m = Mapping.delete k m" ..
+
+code_datatype Tree
+
+lemma empty_Tree [code]:
+  "Mapping.empty = Tree Empty"
+  by (simp add: Tree_def Mapping.empty_def)
+
+lemma lookup_Tree [code]:
+  "Mapping.lookup (Tree t) = lookup t"
+  by (simp add: Tree_def)
+
+lemma update_Tree [code]:
+  "Mapping.update k v (Tree t) = Tree (update k v t)"
+  by (simp add: Tree_def lookup_update)
+
+lemma keys_Tree [code]:
+  "Mapping.keys (Tree t) = set (filter (\<lambda>k. lookup t k \<noteq> None) (remdups (keys t)))"
+  by (simp add: Tree_def dom_lookup)
+
+lemma size_Tree [code]:
+  "Mapping.size (Tree t) = size t"
+proof -
+  have "card (dom (Tree.lookup t)) = length (filter (\<lambda>x. x \<noteq> None) (map (lookup t) (remdups (keys t))))"
+    unfolding dom_lookup by (subst distinct_card) (auto simp add: comp_def)
+  then show ?thesis by (auto simp add: Tree_def Mapping.size_def size_def)
+qed
+
+lemma tabulate_Tree [code]:
+  "Mapping.tabulate ks f = Tree (bulkload (sort ks) f)"
+proof -
+  have "Mapping.lookup (Mapping.tabulate ks f) = Mapping.lookup (Tree (bulkload (sort ks) f))"
+    by (simp add: lookup_Tree lookup_bulkload lookup_tabulate)
+  then show ?thesis by (simp add: lookup_inject)
+qed
+
+end