--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/Overview/LNCS/RECDEF.thy Mon Jul 01 15:33:03 2002 +0200
@@ -0,0 +1,109 @@
+(*<*)
+theory RECDEF = Main:
+(*>*)
+
+subsection{*Wellfounded Recursion*}
+
+subsubsection{*Examples*}
+
+consts fib :: "nat \<Rightarrow> nat";
+recdef fib "measure(\<lambda>n. n)"
+ "fib 0 = 0"
+ "fib (Suc 0) = 1"
+ "fib (Suc(Suc x)) = fib x + fib (Suc x)";
+
+consts sep :: "'a \<times> 'a list \<Rightarrow> 'a list";
+recdef sep "measure (\<lambda>(a,xs). length xs)"
+ "sep(a, []) = []"
+ "sep(a, [x]) = [x]"
+ "sep(a, x#y#zs) = x # a # sep(a,y#zs)";
+
+consts last :: "'a list \<Rightarrow> 'a";
+recdef last "measure (\<lambda>xs. length xs)"
+ "last [x] = x"
+ "last (x#y#zs) = last (y#zs)";
+
+consts sep1 :: "'a \<times> 'a list \<Rightarrow> 'a list";
+recdef sep1 "measure (\<lambda>(a,xs). length xs)"
+ "sep1(a, x#y#zs) = x # a # sep1(a,y#zs)"
+ "sep1(a, xs) = xs";
+
+text{*
+This is what the rules for @{term sep1} are turned into:
+@{thm[display,indent=5] sep1.simps[no_vars]}
+*}
+(*<*)
+thm sep1.simps
+(*>*)
+
+text{*
+Pattern matching is also useful for nonrecursive functions:
+*}
+
+consts swap12 :: "'a list \<Rightarrow> 'a list";
+recdef swap12 "{}"
+ "swap12 (x#y#zs) = y#x#zs"
+ "swap12 zs = zs";
+
+
+subsubsection{*Beyond Measure*}
+
+text{*
+The lexicographic product of two relations:
+*}
+
+consts ack :: "nat\<times>nat \<Rightarrow> nat";
+recdef ack "measure(\<lambda>m. m) <*lex*> measure(\<lambda>n. n)"
+ "ack(0,n) = Suc n"
+ "ack(Suc m,0) = ack(m, 1)"
+ "ack(Suc m,Suc n) = ack(m,ack(Suc m,n))";
+
+
+subsubsection{*Induction*}
+
+text{*
+Every recursive definition provides an induction theorem, for example
+@{thm[source]sep.induct}:
+@{thm[display,margin=70] sep.induct[no_vars]}
+*}
+(*<*)thm sep.induct[no_vars](*>*)
+
+lemma "map f (sep(x,xs)) = sep(f x, map f xs)"
+apply(induct_tac x xs rule: sep.induct)
+apply simp_all
+done
+
+lemma ack_incr2: "n < ack(m,n)"
+apply(induct_tac m n rule: ack.induct)
+apply simp_all
+done
+
+
+subsubsection{*Recursion Over Nested Datatypes*}
+
+datatype tree = C "tree list"
+
+lemma termi_lem: "t \<in> set ts \<longrightarrow> size t < Suc(tree_list_size ts)"
+by(induct_tac ts, auto)
+
+consts mirror :: "tree \<Rightarrow> tree"
+recdef mirror "measure size"
+ "mirror(C ts) = C(rev(map mirror ts))"
+(hints recdef_simp: termi_lem)
+
+lemma "mirror(mirror t) = t"
+apply(induct_tac t rule: mirror.induct)
+apply(simp add: rev_map sym[OF map_compose] cong: map_cong)
+done
+
+text{*
+Figure out how that proof worked!
+
+\begin{exercise}
+Define a function for merging two ordered lists (of natural numbers) and
+show that if the two input lists are ordered, so is the output.
+\end{exercise}
+*}
+(*<*)
+end
+(*>*)