(*<*)
theory RECDEF = Main:
(*>*)
subsection{*Wellfounded Recursion*}
subsubsection{*Examples*}
consts fib :: "nat \<Rightarrow> nat";
recdef fib "measure(\<lambda>n. n)"
"fib 0 = 0"
"fib (Suc 0) = 1"
"fib (Suc(Suc x)) = fib x + fib (Suc x)";
consts sep :: "'a \<times> 'a list \<Rightarrow> 'a list";
recdef sep "measure (\<lambda>(a,xs). length xs)"
"sep(a, []) = []"
"sep(a, [x]) = [x]"
"sep(a, x#y#zs) = x # a # sep(a,y#zs)";
consts last :: "'a list \<Rightarrow> 'a";
recdef last "measure (\<lambda>xs. length xs)"
"last [x] = x"
"last (x#y#zs) = last (y#zs)";
consts sep1 :: "'a \<times> 'a list \<Rightarrow> 'a list";
recdef sep1 "measure (\<lambda>(a,xs). length xs)"
"sep1(a, x#y#zs) = x # a # sep1(a,y#zs)"
"sep1(a, xs) = xs";
text{*
This is what the rules for @{term sep1} are turned into:
@{thm[display,indent=5] sep1.simps[no_vars]}
*}
(*<*)
thm sep1.simps
(*>*)
text{*
Pattern matching is also useful for nonrecursive functions:
*}
consts swap12 :: "'a list \<Rightarrow> 'a list";
recdef swap12 "{}"
"swap12 (x#y#zs) = y#x#zs"
"swap12 zs = zs";
subsubsection{*Beyond Measure*}
text{*
The lexicographic product of two relations:
*}
consts ack :: "nat\<times>nat \<Rightarrow> nat";
recdef ack "measure(\<lambda>m. m) <*lex*> measure(\<lambda>n. n)"
"ack(0,n) = Suc n"
"ack(Suc m,0) = ack(m, 1)"
"ack(Suc m,Suc n) = ack(m,ack(Suc m,n))";
subsubsection{*Induction*}
text{*
Every recursive definition provides an induction theorem, for example
@{thm[source]sep.induct}:
@{thm[display,margin=70] sep.induct[no_vars]}
*}
(*<*)thm sep.induct[no_vars](*>*)
lemma "map f (sep(x,xs)) = sep(f x, map f xs)"
apply(induct_tac x xs rule: sep.induct)
apply simp_all
done
lemma ack_incr2: "n < ack(m,n)"
apply(induct_tac m n rule: ack.induct)
apply simp_all
done
subsubsection{*Recursion Over Nested Datatypes*}
datatype tree = C "tree list"
lemma termi_lem: "t \<in> set ts \<longrightarrow> size t < Suc(tree_list_size ts)"
by(induct_tac ts, auto)
consts mirror :: "tree \<Rightarrow> tree"
recdef mirror "measure size"
"mirror(C ts) = C(rev(map mirror ts))"
(hints recdef_simp: termi_lem)
lemma "mirror(mirror t) = t"
apply(induct_tac t rule: mirror.induct)
apply(simp add: rev_map sym[OF map_compose] cong: map_cong)
done
text{*
Figure out how that proof worked!
\begin{exercise}
Define a function for merging two ordered lists (of natural numbers) and
show that if the two input lists are ordered, so is the output.
\end{exercise}
*}
(*<*)
end
(*>*)